Change search
ReferencesLink to record
Permanent link

Direct link
Experiments and modeling of particulate debris spreading in a pool
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
KTH, School of Engineering Sciences (SCI), Physics, Nuclear Power Safety.
2015 (English)In: International Topical Meeting on Nuclear Reactor Thermal Hydraulics 2015, NURETH 2015, 2015, 8055-8068 p.Conference paper (Refereed)Text
Abstract [en]

Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase turbulent flows in the pool serve as a source of mechanical energy which can affect the initial geometry as well as dynamically change the shape of already formed debris bed. The main goal of this work is to provide experimental data on spreading of solid particles in the pool by large scale two-phase flow structures induced by gas injection from the bottom. These data are necessary for development and validation of predictive capabilities of computer codes allowing numerical modeling of the debris bed formation at prototypic severe accident conditions. In PDS-P experiments air injection at the bottom of the test section is employed in order to create large scale flow in the pool. The test section is constructed as a rectangular tank. It has close to 2D geometry with fixed width (72 mm), variable length (up to 1.6 m) and allows water filling depth of up to 1 m. The variable pool length and depth allows formation of the different in size and pattern two-phase circulating flows. Experimental conditions such as gas-phase flow rate and particle properties (density and size) are scaled to maintain relevancy to the prototypic accident conditions. The average void fraction in the pool is determined by video recording and image processing. Particles are supplied from the top of the facility above the water surface. In the separate-effect studies of the influence of two-phase currents on particle trajectories and bed formation, a low particle flow rate is required in order to minimize or completely exclude particle-particle interaction. Results of several series of PDS-P (Particulate Debris Spreading in the Pool) reported in this paper are analyzed analytically. The preliminary scaling approach is proposed and has good agreement with experimental findings.

Place, publisher, year, edition, pages
2015. 8055-8068 p.
Keyword [en]
Debris bed formation, Particulate spreading, Three-phase flow, Turbulence in the pool, Accidents, Debris, Geometry, Hydraulics, Image processing, Image recording, Lakes, Light water reactors, Nuclear reactor accidents, Nuclear reactors, Video recording, Video signal processing, Void fraction, Debris bed, Experimental conditions, Geometrical configurations, Particle-particle interactions, Predictive capabilities, Recording and image processing, Two phase flow
National Category
Mechanical Engineering
URN: urn:nbn:se:kth:diva-187525ScopusID: 2-s2.0-84964040303ISBN: 9781510811843OAI: diva2:937018
16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2015, 30 August 2015 through 4 September 2015

QC 20160614

Available from: 2016-06-14 Created: 2016-05-25 Last updated: 2016-06-14Bibliographically approved

Open Access in DiVA

No full text


Search in DiVA

By author/editor
Konovalenko, AlexanderBasso, SimoneKudinov, Pavel
By organisation
Nuclear Power Safety
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link