Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design and operation of fast model predictive controller for stabilization of magnetohydrodynamic modes in a fusion device
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0002-5259-0458
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0002-9546-4494
2016 (English)In: Proceedings of the IEEE Conference on Decision and Control, IEEE conference proceedings, 2016, 7347-7352 p.Conference paper, Published paper (Refereed)
Resource type
Text
Abstract [en]

Magnetic confinement fusion (MCF) devices suffer from magnetohydrodynamic (MHD) instabilities. A particular unstable mode, known as the resistive wall mode (RWM), is treated in this work. The RWM perturbs the plasma globally and can degrade the confinement or even terminate the plasma if not stabilized. This paper presents a control design approach to stabilize the RWM in the reversed-field pinch (RFP). The approach consists of: closed-loop system identification of the RFP, design of a fast model predictive controller and experimental validation of the controller. Experimental results shows that the proposed controller manages to stabilize the RWM in plasma.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2016. 7347-7352 p.
Keyword [en]
Coils, Control design, Magnetohydrodynamic power generation, Magnetohydrodynamics, Plasmas, Predictive models, Yttrium
National Category
Fusion, Plasma and Space Physics Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-188273DOI: 10.1109/CDC.2015.7403379ISI: 000381554507089Scopus ID: 2-s2.0-84962016878ISBN: 9781479978861 (print)OAI: oai:DiVA.org:kth-188273DiVA: diva2:937487
Conference
54th IEEE Conference on Decision and Control, CDC 2015, 15 December 2015 through 18 December 2015
Note

QC 20160615

Available from: 2016-06-15 Created: 2016-06-09 Last updated: 2017-02-02Bibliographically approved
In thesis
1. Model based approach to resistive wall magnetohydrodynamic instability control: Experimental modeling and optimal control for the reversed-field pinch
Open this publication in new window or tab >>Model based approach to resistive wall magnetohydrodynamic instability control: Experimental modeling and optimal control for the reversed-field pinch
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The primary objective of fusion research is to realize a thermonuclear fusion power plant. The main method to confine the hot plasma is by using a magnetic field. The reversed-field pinch is a type of magnetic confinement device which suffers from variety of magnetohy- drodynamic (MHD) instabilities. A particular unstable mode that is treated in this work is the resistive wall mode (RWM), which occurs due to the current gradient in the RFP and has growth rates of the order of the magnetic diffusion time of the wall. Application of control engineering tools appears to allow a robust and stable RFP operation.A model-based approach to stabilize the RWMs is pursued in this thesis. The approach consists of empirical modeling of RWMs using a class of subspace identification methodology. The obtained model is then used as a basis for a model based controller. In particular the first experimental results of using a predictive control for RWM stabilization are obtained. It is shown that the formulation of the model based controller allows the user to incorporate several physics relevant phenomena along with the stabilization of RWM. Another use of the model is shown to estimate and compensate the inherent error field. The results are encouraging, and the methods appear to be generically useful as research tools in controlled magnetic confinement fusion.

Abstract [sv]

Fusionsforskningens primära mål är att förverkliga en ny typ av kraftverk baserade på termonukleär fusion. Den viktigaste metoden för att innesluta det heta plasmat är användandet av  magnetfält. ”Reverserat-fält pinch” (RFP) är en typ av anläggning för magnetisk inneslutning av fusionsplasma som uppvisar ett flertal magneto-hydrodynamiska instabiliteter. En specifik instabil mod som behandlas i detta arbete är”resistiv-vägg” moden (RWM). Den orsakas av strömgradienten i RFPn och tillväxer med en tidskonstant som är av samma storleksordning som magnetfältets diffusionstid i det omgivande metallskalet.  Tillämpning av verktyg från reglerteknikområdet förefaller tillåta en robust och stabil RFP drift. I detta arbete används ett modell-baserat tillvägagångssätt för kompensering av RWM. Det innefattar empirisk modellering av RWM med användning av ”subspace” system-identifieringsmetoder. Den erhållna modellen används sedan som grund för en modell-baserad regulator. De första experimentella resultaten från modell-prediktiv kompensering av RWM har erhållits.  I detta arbete har också visats att formuleringen av den modellbaserade regulatorn tillåter användaren att integrera flera relevanta fysikaliska aspekter förutom RWM. Ytterligare en användning av modellen är för att göra uppskattning och kompensering av avvikelser i anläggningens magnetfält, så kallade fält-fel. Resultaten är uppmuntrande, och det förefaller som om de undersökta metoderna är allmänt användbara som verktyg för forskning om magnetisk inneslutning av fusionsplasma.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 59 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2016:192
Keyword
magnetohydrodynamic, model based control, reversed-field pinch
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-200817 (URN)978-91-7729-228-9 (ISBN)
Public defence
2017-02-09, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Supervisors
Note

QC 20170202

Available from: 2017-02-02 Created: 2017-02-02 Last updated: 2017-02-02Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://cdc2015.ieeecss.org/

Search in DiVA

By author/editor
Setiadi, Agung ChrisBrunsell, Per R.Frassinetti, Lorenzo
By organisation
Fusion Plasma Physics
Fusion, Plasma and Space PhysicsControl Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf