References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A fast solver for the circulant rational covariance extension problemPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: 2015 European Control Conference, ECC 2015, Institute of Electrical and Electronics Engineers (IEEE), 2015, 727-733 p.Conference paper (Refereed)Text
##### Abstract [en]

##### Place, publisher, year, edition, pages

Institute of Electrical and Electronics Engineers (IEEE), 2015. 727-733 p.
##### Keyword [en]

Bounded degree, Cepstral coefficients, Fast solvers, Hankel systems, Newton algorithm, Periodic problems, Periodic process, Rational covariance extension problem, Control
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-186818DOI: 10.1109/ECC.2015.7330629ScopusID: 2-s2.0-84963853505ISBN: 9783952426937OAI: oai:DiVA.org:kth-186818DiVA: diva2:938601
##### Conference

European Control Conference, ECC 2015, 15 July 2015 through 17 July 2015
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
##### Note

The rational covariance extension problem is to parametrize the family of rational spectra of bounded degree that matches a given set of covariances. This article treats a circulant version of this problem, where the underlying process is periodic and we seek a spectrum that also matches a set of given cepstral coefficients. The interest in the circulant problem stems partly from the fact that this problem is a natural approximation of the non-periodic problem, but is also a tool in itself for analysing periodic processes. We develop a fast Newton algorithm for computing the solution utilizing the structure of the Hessian. This is done by extending a current algorithm for Toeplitz-plus-Hankel systems to the block-Toeplitz-plus-block-Hankel case. We use this algorithm to reduce the computational complexity of the Newton search from O(n3) to O(n2), where n corresponds to the number of covariances and cepstral coefficients.

QC 20160617

Available from: 2016-06-17 Created: 2016-05-13 Last updated: 2016-06-17Bibliographically approvedReferences$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});