Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The use of plants as a "green factory" to produce high strength gluten-based materials
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
Show others and affiliations
2016 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 18, no 9, 2782-2792 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

The aim of the present study was to develop an understanding of how wheat plants can be used as a "green factory" by the modulation of genotype (G) and environmental (E) interactions to fine-tune the structure and increase the strength of gluten based materials. Two wheat genotypes (5 + 10 and 2 + 12) were grown under four nitrogen and two temperature regimes to obtain gluten of various characteristics. Protein microstructure morphology revealed by confocal laser scanning microscopy suggested a higher polymerisation of proteins in glycerol plasticized films from the 5 + 10 compared to the 2 + 12 genotype. Also, films with the highest Young's modulus and maximum stress were obtained from the 5 + 10 genotype, which might be explained by the higher number of cysteine residues and consequently more disulphide crosslinks in this genotype compared to the 2 + 12 one. The presence of two nano-scaled morphologies, hexagonal and lamellar structures and their internal relations were found to be of relevance for formation of beta-sheets and also to be related to performance (strength) of the material. Thus, plants could be used as a "green factory", avoiding the use of chemicals, to tune the tensile properties of the materials. Structural properties such as relatively low protein aggregation, high beta-sheet content and a high hexagonal to lamellar structural ratio at the nano-scale were found to yield films with high stiffness and strength.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 18, no 9, 2782-2792 p.
National Category
Organic Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-188752DOI: 10.1039/c5gc03111gISI: 000375291100027Scopus ID: 2-s2.0-84967222528OAI: oai:DiVA.org:kth-188752DiVA: diva2:939648
Note

QC 20160620

Available from: 2016-06-20 Created: 2016-06-17 Last updated: 2016-06-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hedenqvist, Mikael S.
By organisation
Fibre and Polymer Technology
In the same journal
Green Chemistry
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf