Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maskininlärning som möjligt planeringsverktyg för mindre serviceföretag: En studie i maskininlärning för verksamhetsplanering inom hissbranschen hos fallstudieföretaget S:t Eriks Hiss AB
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2016 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Machine Learning as a complementary planning tool for SME’s in the maintenance industry : A study of machine learning for operational planning within the elevator sector at S:t Eriks Hiss AB (English)
Abstract [sv]

I följande rapport visar vi att maskininlärningsalgoritmer från lättillgängliga bibliotek kan vara värdefulla verktyg, vid analys av företagsdata. Vi föreslår en ny metrik för frekvensanalys av oplanerade underhållsbesök genom en fallstudie inom hissbranschen och ger också företaget i fråga, S:t Eriks Hiss i Stockholm, ett geografiskt kundsegmenteringsalternativ, baserat på K-Meansklustring. Vi tillhandahåller också en kort diskussion om huruvida resultaten från Anderson et al (2009) och Blakeley et al (2003) skulle kunna utgöra ett analytiskt ramverk för företag i den urbana infrastrukturindustrin.

Abstract [en]

In this report we show that Machine Learning algorithms from readily available libraries can be useful tools when analyzing company data.

We suggest a new metric for analyzing the frequency of unplanned maintenance calls with an elevator maintenance case study, and also provide the company in question, S:t Eriks Hiss, with a K-Means clustered suggestion of geographical customer partitioning. We provide a brief discussion on whether the results from Anderson et al (2009) and Blakeley et al. (2003) could provide an analytical framework for companies in the urban maintenance industry.

A weak negative correlation between profitability and our suggested metric indicate that so is the case and makes for interesting further enquiry.

Place, publisher, year, edition, pages
2016.
Keyword [en]
machine learning, elevator, business planning, optimisation
Keyword [sv]
maskininlärning, hiss, verksamhetsplanering, effektivisering
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-189468OAI: oai:DiVA.org:kth-189468DiVA: diva2:946202
External cooperation
S:t Eriks Hiss AB
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2016-07-06 Created: 2016-07-04 Last updated: 2016-07-06Bibliographically approved

Open Access in DiVA

fulltext(16478 kB)249 downloads
File information
File name FULLTEXT01.pdfFile size 16478 kBChecksum SHA-512
ee037e1959bd2f59ff53a1190424e440f26ab89f92377789fc52a925e4c99651b44b5ec16f3ce95c98f58568c40ccdbe68258c6ee9f6d5a563b6b0905e2aa8f9
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 249 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 454 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf