Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving the Photocurrent in Quantum-Dot-Sensitized Solar Cells by Employing Alloy PbxCd1-xS Quantum Dots as Photosensitizers
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0001-6005-2302
Show others and affiliations
2016 (English)In: NANOMATERIALS, ISSN 2079-4991, Vol. 6, no 6, UNSP 97Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Ternary alloy PbxCd1-xS quantum dots (QDs) were explored as photosensitizers for quantum-dot-sensitized solar cells (QDSCs). Alloy PbxCd1-xS QDs (Pb0.54Cd0.46S, Pb0.31Cd0.69S, and Pb0.24Cd0.76S) were found to substantially improve the photocurrent of the solar cells compared to the single CdS or PbS QDs. Moreover, it was found that the photocurrent increases and the photovoltage decreases when the ratio of Pb in PbxCd1-xS is increased. Without surface protecting layer deposition, the highest short-circuit current density reaches 20 mA/cm(2) under simulated AM 1.5 illumination (100 mW/cm(2)). After an additional CdS coating layer was deposited onto the PbxCd1-xS electrode, the photovoltaic performance further improved, with a photocurrent of 22.6 mA/cm(2) and an efficiency of 3.2%.

Place, publisher, year, edition, pages
MDPI AG , 2016. Vol. 6, no 6, UNSP 97
Keyword [en]
quantum dot-sensitized solar cells, photocurrent, alloy, PbS
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-189945DOI: 10.3390/nano6060097ISI: 000378806100003Scopus ID: 2-s2.0-84973909653OAI: oai:DiVA.org:kth-189945DiVA: diva2:950173
Note

QC 20160728

Available from: 2016-07-28 Created: 2016-07-25 Last updated: 2016-07-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yuan, ChunzeLi, LinHuang, JingSun, LichengÅgren, Hans
By organisation
Theoretical Chemistry and BiologyOrganic Chemistry
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf