Change search
ReferencesLink to record
Permanent link

Direct link
Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
KTH, School of Biotechnology (BIO), Industrial Biotechnology. Universidad Mayor de San Simón, Bolivia.
KTH, School of Biotechnology (BIO), Industrial Biotechnology.
Show others and affiliations
2016 (English)In: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 15, 91Article in journal (Refereed) PublishedText
Abstract [en]

Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. Results: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V-max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q(3HB) = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y-3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L-1, which was 50 % higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L-1 and a productivity of 0.42 g L-1 h(-1), which is comparable to maximum values found in recombinant E. coli. Conclusions: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.

Place, publisher, year, edition, pages
Springer, 2016. Vol. 15, 91
Keyword [en]
Escherichia coli, Halomonas boliviensis, (R)-3-hydroxybutyrate, Acetoacetyl-CoA reductase, NADPH, zwf overexpression, Glutamate, Nitrogen limitation
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-189084DOI: 10.1186/s12934-016-0490-yISI: 000377167900001PubMedID: 27245326ScopusID: 2-s2.0-84973131317OAI: oai:DiVA.org:kth-189084DiVA: diva2:951344
Note

QC 20160808

Available from: 2016-08-08 Created: 2016-06-27 Last updated: 2016-09-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Perez-Zabaleta, MarielSjöberg, GustavGuevara-Martinez, MonicaJarmander, JohanGustavsson, MartinLarsson, Gen
By organisation
Industrial Biotechnology
In the same journal
Microbial Cell Factories
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 15 hits
ReferencesLink to record
Permanent link

Direct link