Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potential Influences on Long-Term Service Performance of Road Infrastructure by Automated Vehicles
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.ORCID iD: 0000-0001-9504-2008
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
2016 (English)In: Transportation Research Record, ISSN 0361-1981, E-ISSN 2169-4052, no 2550, 72-79 p.Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Automated vehicles (AVs) have received great attention in recent years, and an automated road transportation sector may become reality in the next decades. Many benefits of AVs have been optimistically predicted, although some benefits may be overestimated because of a lack of thinking from a holistic point of view. From a future perspective, this study investigated the potential consequences to the long-term service performance of practical physical road infrastructure after the advent of the implementation of AVs on a large scale. Specifically, the, pavement rutting performance by the possibly changed behaviors, such as the vehicle's wheel wander, lane capacity, and traffic speed, was examined carefully with the finite element modeling approach. With the use of AVs, the decreased wheel wander and increased lane capacity could bring an accelerated rutting potential, but the increase in traffic speed would negate this effect, which was shown by the simulation results of rut depth. Therefore the influence cannot be judged as positive or negative in general; judgment actually depends much on the practical road and traffic conditions. In the future the physical roads not only might serve for the mobility of the vehicles but also might be capable of enabling other new functions. An early consideration of how to lead the future development of physical road infrastructure toward multifunctionality is emphasized.

Place, publisher, year, edition, pages
2016. no 2550, 72-79 p.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-190585DOI: 10.3141/2550-10ISI: 000379889700011Scopus ID: 2-s2.0-85014473772OAI: oai:DiVA.org:kth-190585DiVA: diva2:952675
Note

QC 20161107

Available from: 2016-08-15 Created: 2016-08-12 Last updated: 2016-11-11Bibliographically approved
In thesis
1. Sustainable Implementation of Electrified Roads: Structural and Material Analyses
Open this publication in new window or tab >>Sustainable Implementation of Electrified Roads: Structural and Material Analyses
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Given the promise of the Inductive Power Transfer (IPT) technology for eRoad applications, the potential challenges for a successful integration of dynamic IPT technology into the physical road structure are explored extensively in this research work. The Finite Element Method (FEM) is selected for studying the structural performance of an eRoad under operational conditions. In this, an energy-based finite strain constitutive model for asphalt materials is developed and calibrated, to enable the detailed investigation of the structural response and optimization of the considered eRoad. In the context of enabling both dynamic charging and autonomous driving for future electric vehicles, the influences to the pavement (rutting) performance by the changed vehicle behaviour are investigated as well. Moreover, to study the effect on the IPT system by the integration, the potential power loss caused within eRoad pavement materials is further examined by a combined analytic and experimental analysis. The direct research goal of this Thesis is therefore to enhance the possibility of a sustainable implementation of the eRoad solutions into the real society. At the same time, it aims to demonstrate that the road structure itself is an important part of smart infrastructure systems that can either become a bottleneck or a vessel of opportunities, supporting the successful integration of these complex systems.

Abstract [sv]

Givet de förutsättningar som induktiv energiöverföring (IPT Inductive Power Transfer) har för eRoad applikationerna, utforskas möjligheterna för en framgångsrik integration av dynamisk IPT i den fysiska vägkonstruktionen på en djupgående nivå i detta forskningsarbete. Speciellt har finita elementmetoden använts för att studera det strukturella beteendet hos en e-väg under driftsmässiga förhållanden. Inom detta har en energibaserad konstitutiv model för stora töjningar utvecklats och kalibrerats för att möjliggöra detaljerade undersökningar av strukturell respons och optimering av de föreslagna e-vägarna. I samband med att möjliggöra både dynamisk laddning och autonom körning för framtida elektriska fordon, har beläggningars (spårbildnings)egenskaper studerats utifrån de laddande fordonen beteende. Dessutom för att studera effekten av IPT-systemet har den potentiella energiförlusten inom e-vägars beläggningsmaterial undersökts genom en kombinerad analytisk och experimentell undersökning. Som sådant är det direkta forskningsmålet med denna avhandling att utöka möjligheterna för en hållbar implementering av eRoad systemet inom det verkliga samhället. Samtidigt är målet att visa att vägkonstruktionen i sig själv är en viktig del av det smarta infrastruktursystemet som antingen kan bli en flaskhals eller en bärare av möjligheter, stödjande en framgångsrik implementering av dessa komplexa system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. 70 p.
Series
TRITA-BKN. Bulletin, ISSN 1103-4270 ; 144
Keyword
Electrified road; Structural performance; Constitutive modelling; Asphalt; Dielectric loss., Elektrifierade vägar; Strukturellt beteende; Konstruktivt modellerande; Asfalt; Dielektrisk förlust.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering; Transport Science
Identifiers
urn:nbn:se:kth:diva-195669 (URN)978-91-7729-193-0 (ISBN)
Public defence
2016-11-25, sal A123, Osquars backe 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20161108

Available from: 2016-11-08 Created: 2016-11-07 Last updated: 2016-11-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Chen, FengBalieu, RomainKringos, Nicole
By organisation
Civil and Architectural EngineeringStructural Engineering and Bridges
In the same journal
Transportation Research Record
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf