Change search
ReferencesLink to record
Permanent link

Direct link
The benefits of geospatial planning in energy access - A case study on Ethiopia
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
Show others and affiliations
2016 (English)In: Applied Geography, ISSN 0143-6228, E-ISSN 1873-7730, Vol. 72, 1-13 p.Article in journal (Refereed) PublishedText
Abstract [en]

Access to clean and affordable modern energy is crucial to fostering social and economic development and to achieving the Sustainable Development Goals. Efficient policy frameworks and effective electrification programs are required in order to ensure that people are electrified in a sustainable manner. These programs differ from country to country depending on geographic and socioeconomic conditions. Electrification planning process must consider the geographical characteristics of the resources as well as the spatial dimension of social and economic drivers of energy demand in order to find the most optimal energy access solution. Geographical theory and Geographic Information Systems (GIS) in particular can play a significant role in electrification planning, since they are capable of managing the data needed in the decision making process and may integrate and assess all possible options. This paper focuses on considering these characteristics by applying a recently developed GIS based methodology to inform electrification planning and strategies in Ethiopia. The paper illustrates two major aspects of energy planning; 1.) how the optimal electrification mix is influenced by a range of parameters including population density, existing and planned transmission networks and power plants, economic activities, tariffs for grid-based electricity, technology costs for mini-grid and off-grid systems, and fuel costs for consumers and 2.) how the electrification mix differs from location to location. For a certain level of energy access, on-grid connections would be optimal for the majority of the new connections in Ethiopia; grid extension constitutes the lowest cost option for approximately 93% of the newly electrified population in this modelling effort with 2030 as time horizon. However, there are some remote areas with low population density where a mini-grid (ca. 6%) or a stand-alone solution (ca. 1%) are the most economic options. Depending on local resource availability, these systems deploy varied combinations of solar, wind, hydro and diesel technologies.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 72, 1-13 p.
Keyword [en]
GIS, Energy planning, Energy access
National Category
Energy Systems
URN: urn:nbn:se:kth:diva-190662DOI: 10.1016/j.apgeog.2016.04.009ISI: 000378967300001ScopusID: 2-s2.0-84966320570OAI: diva2:953100

QC 20160816

Available from: 2016-08-16 Created: 2016-08-12 Last updated: 2016-08-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Mentis, DimitriosHowells, MarkRogner, HolgerSiyal, ShahidBroad, OliverKorkovelos, AlexandrosBazilian, Morgan
By organisation
Energy Systems Analysis
In the same journal
Applied Geography
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 130 hits
ReferencesLink to record
Permanent link

Direct link