Change search
ReferencesLink to record
Permanent link

Direct link
Plasma impact on diagnostic mirrors in JET
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0001-5603-8559
(English)Manuscript (preprint) (Other academic)
Abstract [en]

All optical diagnostics in ITER will rely on metallic mirrors acting as plasma-facing components. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013-2014 experimental campaign. In the main chamber, only mirrors located at the entrance of the carrier lost reflectivity (Be deposition from the eroded limiters), while those located deeper in the carrier were only slightly affected. The performance of mirrors in the JET divertor was strongly degraded by deposition of beryllium, tungsten and other species. Mirrors from the lithium-beam diagnostic have been studied for the first time. Gold coatings were severely damaged by intense arcing. As a consequence, material mixing of the gold layer with the stainless steel substrate occurred. Total reflectivity dropped from over 90% to less than 60 %, i.e. to the level typical for stainless steel.

Keyword [en]
JET, First Mirror Test, diagnostic mirrors, erosion-deposition
National Category
Physical Sciences
Research subject
Physics
Identifiers
URN: urn:nbn:se:kth:diva-190899OAI: oai:DiVA.org:kth-190899DiVA: diva2:953641
Note

QC 20160819

Available from: 2016-08-18 Created: 2016-08-18 Last updated: 2016-09-02Bibliographically approved
In thesis
1. Impact of material migration on plasma-facing components in tokamaks
Open this publication in new window or tab >>Impact of material migration on plasma-facing components in tokamaks
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Plasma-wall interaction plays an essential role in the performance and safety of a fusion reactor. This thesis focuses on the impact of material migration on plasma-facing components. It is based on experiments performed in tokamaks: JET, TEXTOR and ASDEX Upgrade. The objectives of the experiments were to assess fuel and impurity removal under ion cyclotron wall conditioning (ICWC) and plasma impact on diagnostic mirrors.

In wall conditioning studies, tracer techniques based on the injection of rare isotopes (15N, 18O) were used to determine conclusively the impact of the respective gases. For the first time, probe surfaces and wall components exposed to ICWC were examined by surface analysis methods. Discharges in hydrogen were the most efficient to erode carbon co-deposits, resulting in a reduction of the initial deuterium content by a factor of two. It was also found that impurities desorbed under ICWC are partly re-deposited on the wall.

Plasma impact on diagnostic mirrors was determined by surface analysis of test mirrors exposed at JET. Reflectivity of mirrors from the divertor region was severely decreased due to deposits of beryllium, deuterium, carbon and other impurities. This result points out the need to develop mirror maintenance procedures. Neutron damage on mirrors was simulated by ion irradiation in an ion implanter. It was shown that damage levels similar to those expected in the first wall of a fusion reactor do not produce a significant change in reflectivity.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 54 p.
Series
TRITA-EE, ISSN 1653-5146
Keyword
Fusion, material migration, wall conditioning, diagnostic mirrors, plasma-facing materials
National Category
Fusion, Plasma and Space Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-190903 (URN)978-91-7729-046-9 (ISBN)
Public defence
2016-09-15, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20160819

Available from: 2016-08-19 Created: 2016-08-18 Last updated: 2016-08-19Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Garcia Carrasco, Alvaro
By organisation
Fusion Plasma Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 4 hits
ReferencesLink to record
Permanent link

Direct link