Change search
ReferencesLink to record
Permanent link

Direct link
A Study of Bubble and Inclusion Behaviors in a Liquid Steel Bath
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

    The bubble formation processes in a water model experiment were measured by a high-speed camera. Nozzle diameters of 0.5 mm, 1 mm and 2 mm were investigated under both wetting and non-wetting conditions. The bubble sizes and formation frequencies as well as the bubbling regimes were identified for each nozzle size and for different wettabilities. The results show that the upper limits of the bubbling regime were 7.35 L/h, 12.05 L/h and 15.22 L/h under wetting conditions for the 0.5 mm, 1 mm and 2 mm nozzle diameters, respectively. Meanwhile, the limits were 12.66 L/h, 13.64 L/h and 15.33 L/h for the non-wetting conditions. In addition to experiments, numerical modeling was performed. The Volume-of-Fluid (VOF) method was used to track the interface between the gas and liquid. The simulation results were compared to experimental observations from an air-water system. The comparisons show a satisfactory good agreement between the two methods (maximum difference is 0.029 s during a bubble formation period). Simulations from the argon-steel system show that the effect of the nozzle size on the bubble formation is insignificant for the current studied metallurgical conditions. The upper limits of the bubbling regime were approximate 60 L/h and 80 L/h for a 2 mm nozzle for wetting and non-wetting conditions, respectively. In addition, a poor wettability leads to a bigger bubble size and a lower frequency compared to a good wettability, for the same gas flow rate.

    The fundamental aspects of rising argon bubbles in molten metal flow were investigated by numerical simulations. The results show that 3~10 mm bubbles rise in a spiral way with strong instabilities which cause them to change their instantaneous shapes. In addition, 10~20 mm bubbles rise rectilinearly and their shapes are kept almost steady. All these bubbles’ terminal velocities are around 0.3 m/s, which are in accordance with literature data. The simulation results of bubble bursting at the liquid surface show that when the surface tension is 1.4 N/m, the critical bubble size is 9.3 mm. Also, the ejection is found to increase with an increased surface tension value, unless a critical bubble size is reached. The single bubble passage through the liquid-liquid interface was numerically simulated. The calculation results show that the passing patterns at the steel-slag interface are oscillation-pass, oscillation-breakup, oscillations-pass, pass and pass-breakup for the 3, 5, 7, 10 and 15 (20) mm bubbles, respectively.  For a 5 mm bubble, it was found that an increase of the interfacial tension from 0.04 to 0.8 N/m results in a delayed bubble passage time. The results also show that the bubble experiences an oscillations-breakup process if the interfacial tension value is up to 1.15 N/m. However, a higher interfacial value (1.8 N/m) can make the bubble pass again but with a longer passage time.

    The inclusion removal mechanism due to a bubble wake flow was studied using a water model and using a three dimensional numerical model. The individual particle motion was tracked by the discrete phase model (DPM). The average bubble velocity and particle velocity from simulation are of 2.5% and 28.9% differences compared to the water model experimental results. The predictions in an argon-steel-inclusion system show that the removal rate per bubble is increased with an increased bubble size. However, the inclusion removal rate per unit bubble volume can be improved by decreasing the bubble size. Also, the particle rising zone was found to be 1.625 and 5 times of the bubble size in width and height, respectively. It is also shown that the bigger inclusions are more easily removed compared to the smaller ones.

    The Euler-Euler two-phase simulation model was used to investigate gas stirring in a ladle. In addition, water model experiments were carried out to validate the predicted flow field by using the UVP velocity measurement method. The simulation results show a maximum 0.04 m/s difference in axial velocity compared to the experimental observations. The flow patterns under different gas flow rates were obtained. Simulations for 120 s without the stochastic turbulent motions show that more than 30% of the 400 μm light inclusions can be removed. Also, that the 1~100 μm light inclusions have their highest removal percent for a 3 m3·h-1 gas flow rate. The size (1~100 μm) of heavy inclusion shows little effect on the inclusion removal percent. The 400 μm heavy inclusions are harder to remove compared to the smaller inclusions when the gas flow rate is or higher than 2 m3·h-1. Also, the inclusion transport behavior with the stochastic turbulent motions shows that both light and heavy inclusions are removed by up to 94% with a 1 m3·h-1 gas flow rate after 40 s. When the gas flow rate is 3 m3·h-1, the inclusion removal percent can be improved from 77% to 90% after 20 s and it reaches to almost 99% after 40 s. A further increase of the gas flow rate reduces the inclusion removal percent slightly.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. , 51 p.
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-190915ISBN: 978-91-7729-070-4OAI: oai:DiVA.org:kth-190915DiVA: diva2:954259
Public defence
2016-09-16, Sal F3, Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20160825

Available from: 2016-08-25 Created: 2016-08-18 Last updated: 2016-08-25Bibliographically approved
List of papers
1. A Mathematical Modeling Study of Bubble Formations in a Molten Steel Bath
Open this publication in new window or tab >>A Mathematical Modeling Study of Bubble Formations in a Molten Steel Bath
2015 (English)In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 46, no 6, 2628-2638 p.Article in journal (Refereed) Published
Abstract [en]

The bubble formation during gas injection into liquids was studied using a water model and a three-dimensional numerical model. In the experiment, a high-speed camera was used to record the bubble formation processes. Nozzle diameters of 0.5, 1, and 2 mm were investigated under both wetting and non-wetting conditions. The bubble sizes and formation frequencies as well as the bubbling regimes were identified for each nozzle size and for different wettabilities. The results show that the upper limits of the bubbling regime are 7.35, 12.05, and 15.22 L/h under wetting conditions for the 0.5, 1, and 2 mm nozzle diameters, respectively. Meanwhile, the limits are 12.66, 13.64, and 15.33 L/h for the non-wetting conditions. In the numerical model, the volume-of-fluid method was used to track the interface between the gas and liquid. The simulation results were compared with the experimental observations in the air-water system. The comparisons show a satisfactory good agreement between the two methods. The mathematical model was then applied to simulate the argon-steel system. Simulation results show that the effect of nozzle size is insignificant for the current studied metallurgical conditions. The upper limits of the bubbling regime are approximately 60 and 80 L/h for a 2-mm nozzle for the wetting and non-wetting conditions, respectively. In addition, a poor wettability leads to a bigger bubble and a lower frequency compared with a good wettability, for the same gas flow rate.

Place, publisher, year, edition, pages
Springer, 2015
Keyword
gas-stirred ladles, numerical simulations, 3-dimensional volume, flow conditions, fluid-flow, iron bath, behavior, dynamics, metals, orifices
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-180620 (URN)10.1007/s11663-015-0423-x (DOI)000367067600025 ()2-s2.0-84946112238 (ScopusID)
Note

QC 20160120. QC 20160226

Available from: 2016-01-20 Created: 2016-01-19 Last updated: 2016-08-25Bibliographically approved
2. Numerical Simulation of Single Argon Bubble Rising in Molten Metal Under a Laminar Flow
Open this publication in new window or tab >>Numerical Simulation of Single Argon Bubble Rising in Molten Metal Under a Laminar Flow
2015 (English)In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 86, no 11, 1289-1297 p.Article in journal (Refereed) Published
Abstract [en]

The fundamental aspects of rising argon bubbles in molten metal for a laminar flow were investigated by numerical simulations. The Volume-of-Fluid (VOF) model was used to track the interface between argon and liquid metal. The process of a bubble rising in the molten metal includes two steps, one is the bubble rising inside the liquid, and the other one is the bubble rising across the liquid surface. The bubbling dynamics inside the liquid phase was studied in terms of the bubble's trajectory, shape and terminal velocity over a wide range of bubble diameters. It shows that ≈3–10mm bubbles rise in a spiral way with strong instabilities by changing their instantaneous shapes, while ≈10–20mm bubbles rise rectilinearly and their shapes are kept almost steady. All these bubbles' terminal velocities are around 0.3 m s−1, which are in accordance with literature data. For a bubble with a specific size, small metal droplets can be formed due to the bubble bursting on the free surface. In a situation when the top surface of the bubble is ruptured, the remains of the bubble will collapse and jet droplets can be formed. Simulations of jet droplets were qualitatively analyzed. It shows that when the surface tension is 1.4 N m−1, the critical bubble size is 9.3 mm. Also, the ejection is found to increase with an increased surface tension value, unless a critical bubble size is reached.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2015
Keyword
molten metal, CFD, bubble rising, bubble bursting, droplet
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-165449 (URN)10.1002/srin.201400355 (DOI)000363679600008 ()2-s2.0-84945439869 (ScopusID)
Note

QC 20150430

Available from: 2015-04-28 Created: 2015-04-28 Last updated: 2016-08-25Bibliographically approved
3. Numerical Investigations on Bubble Behavior at a Steel-slag Interface
Open this publication in new window or tab >>Numerical Investigations on Bubble Behavior at a Steel-slag Interface
(English)Manuscript (preprint) (Other academic)
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-190910 (URN)
External cooperation:
Note

QC 20160825

Available from: 2016-08-18 Created: 2016-08-18 Last updated: 2016-08-25Bibliographically approved
4. A Numerical Study about the Influence of Bubble Wake Flow on the Removal of Inclusions
Open this publication in new window or tab >>A Numerical Study about the Influence of Bubble Wake Flow on the Removal of Inclusions
2016 (English)In: ISIJ International, ISSN 1347-5460, Vol. 56, no 11Article in journal (Refereed) Accepted
Place, publisher, year, edition, pages
Iron & Steel Institute of Japan, 2016
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-190909 (URN)
External cooperation:
Note

QC 20160825

Available from: 2016-08-18 Created: 2016-08-18 Last updated: 2016-08-25Bibliographically approved
5. Measurements and Simulations of a Gas-stirred Flow and the Prediction of Inclusion Transport in Ladles
Open this publication in new window or tab >>Measurements and Simulations of a Gas-stirred Flow and the Prediction of Inclusion Transport in Ladles
(English)Manuscript (preprint) (Other academic)
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-190912 (URN)
External cooperation:
Note

QC 20160825

Available from: 2016-08-18 Created: 2016-08-18 Last updated: 2016-08-25Bibliographically approved

Open Access in DiVA

The full text will be freely available from 2016-12-12 09:55
Available from 2016-12-12 09:55

Search in DiVA

By author/editor
Xu, Yonggui
By organisation
Applied Process Metallurgy
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 202 hits
ReferencesLink to record
Permanent link

Direct link