Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Noncommutative Minimal Surfaces
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
2016 (English)In: Letters in Mathematical Physics, ISSN 0377-9017, E-ISSN 1573-0530, Vol. 106, no 8, p. 1109-1129Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

We define noncommutative minimal surfaces in the Weyl algebra, and give a method to construct them by generalizing the well-known Weierstrass representation.

Place, publisher, year, edition, pages
2016. Vol. 106, no 8, p. 1109-1129
Keyword [en]
noncommutative minimal surfaces, noncommutative Weierstrass representation, Weyl algebra, noncommutative catenoid, noncommutative Enneper surface
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-190482DOI: 10.1007/s11005-016-0861-7ISI: 000379609000005Scopus ID: 2-s2.0-84978038804OAI: oai:DiVA.org:kth-190482DiVA: diva2:954398
Note

QC 20160822

Available from: 2016-08-22 Created: 2016-08-12 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hoppe, Jens
By organisation
Mathematics (Div.)
In the same journal
Letters in Mathematical Physics
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf