Change search
ReferencesLink to record
Permanent link

Direct link
Optimal and Resilient Control with Applications in Smart Distribution Grids
KTH, School of Electrical Engineering (EES), Automatic Control.ORCID iD: 0000-0002-4210-8672
2016 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The electric power industry and society are facing the challenges and opportunities of transforming the present power grid into a smart grid. To meet

these challenges, new types of control systems are connected over IT infrastructures. While this is done to meet highly set economical and environmental goals, it also introduces new sources of uncertainty in the control loops. In this thesis, we consider control design taking some of these uncertainties into account.

In Part I of the thesis, some economical and environmental concerns in smart grids are taken into account, and a scheduling framework for static loads (e.g., smart appliances in residential areas) and dynamic loads (e.g., energy storage systems) in the distribution level is investigated. A robust formulation is proposed taking the user behavior uncertainty into account, so that the optimal scheduling cost is less sensitive to unpredictable changes in user preferences. In addition, a novel distributed algorithm for the studied scheduling framework is proposed, which aims at minimizing the aggregated electricity cost of a network of apartments sharing an energy storage system. We point out that the proposed scheduling framework is applicable to various uncertainty sources, storage technologies, and programmable electrical loads.

In Part II of the thesis, we study smart grid uncertainty resulting from possible security threats. Smart grids are one of the most complex cyber-physical systems considered, and are vulnerable to various cyber and physical attacks. The attack scenarios consider cyber adversaries that may corrupt a few measurements and reference signals, which may degrade the system’s reliability and even destabilize the voltage magnitudes. In addition, a practical attack-resilient framework for networked control systems is proposed. This framework includes security information analytics to detect attacks and a resiliency policy to improve the performance of the system running under the attack. Stability and optimal performance of the networked control system under attack and by applying the proposed framework, is proved here. The framework has been applied to an energy management system and its efficiency is demonstrated on a critical attack scenario.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2016. , 112 p.
TRITA-EE, ISSN 1653-5146 ; 2016:128
Keyword [en]
Resilient Control, Robust Control, Optimal Control, Smart Distribution Grid, Industrial Control Systems, Microgrids, Demand Response, Energy
National Category
Control Engineering
Research subject
Electrical Engineering
URN: urn:nbn:se:kth:diva-191307ISBN: 978-91-7729-082-7OAI: diva2:955907
2016-09-16, K1, Teknikringen 56, Kemi, floor 3, Stockholm, 14:00 (English)
Knut and Alice Wallenberg FoundationSwedish Civil Contingencies AgencySwedish Research CouncilEU, FP7, Seventh Framework Programme, 608224

QC 20160830

Available from: 2016-08-30 Created: 2016-08-26 Last updated: 2016-09-02Bibliographically approved

Open Access in DiVA

fulltext(4943 kB)27 downloads
File information
File name FULLTEXT02.pdfFile size 4943 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Paridari, Kaveh
By organisation
Automatic Control
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 29 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 431 hits
ReferencesLink to record
Permanent link

Direct link