Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the implementation of an auxiliary pantograph for speed increase on existing lines
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.ORCID iD: 0000-0001-7393-569X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.ORCID iD: 0000-0002-8237-5847
2016 (English)In: Vehicle System Dynamics, ISSN 0042-3114, E-ISSN 1744-5159, Vol. 54, no 8, 1077-1097 p.Article in journal (Refereed) Published
Abstract [en]

The contact between pantograph and catenary at high speeds suffers from high dynamic contact force variation due to stiffness variations and wave propagation. To increase operational speed on an existing catenary system, especially for soft catenary systems, technical upgrading is usually necessary. Therefore, it is desirable to explore a more practical and cost-saving method to increase the operational speed. Based on a 3D pantograph–catenary finite element model, a parametric study on two-pantograph operation with short spacing distances at high speeds shows that, although the performance of the leading pantograph gets deteriorated, the trailing pantograph feels an improvement if pantographs are spaced at a proper distance. Then, two main positive effects, which can cause the improvement, are addressed. Based on a discussion on wear mechanisms, this paper suggests to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current, to minimise additional wear caused by the leading pantograph. To help implementation and achieve further improvement under this working condition, this paper investigates cases with optimised uplift force on the leading pantograph and with system parameter deviations. The results show that the two positive effects still remain even with some system parameter deviations. About 30% of speed increase should be possibly achieved still sustaining a good dynamic performance with help of the optimised uplift force.

Place, publisher, year, edition, pages
Taylor & Francis, 2016. Vol. 54, no 8, 1077-1097 p.
Keyword [en]
Soft catenary, auxiliary pantograph, multi-pantograph operation, dynamic interaction, uplift force reduction
National Category
Vehicle Engineering
Identifiers
URN: urn:nbn:se:kth:diva-191388DOI: 10.1080/00423114.2016.1187278ISI: 000380157500003Scopus ID: 2-s2.0-84969228229OAI: oai:DiVA.org:kth-191388DiVA: diva2:957817
Note

QC 20160905

Available from: 2016-09-05 Created: 2016-08-30 Last updated: 2017-10-09Bibliographically approved
In thesis
1. Measures to Enhance the Dynamic Performance of Railway Catenaries
Open this publication in new window or tab >>Measures to Enhance the Dynamic Performance of Railway Catenaries
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The pantograph-catenary system is used in railways to transfer electric power from infrastructure to trainset. As the pantograph slides against the catenary, the contact between the two surfaces is not stable due to stiffness variation, propagating wave and other environmental perturbation, especially at high speeds or in multi-pantograph operation. Heavy oscillation can result in poor power-transmission quality, electromagnetic interference, severe wear or even structural damage. So the pantograph-catenary dynamics has become one of the key issues which limits the operational speed and determines the maintenance cost. There are many types of catenary systems in Sweden, which are relatively soft and sensitive compared with the systems in other countries. They work well at low operational speed and have strict limitations to multi-pantograph operation. It is possible to achieve an operational speed of 350 km/h on newly-built high-speed lines, but there is still a large demand for higher operational speed and more capacity on the existing lines.

    Many researchers and engineers have made progress to improve its dynamic performance. From the research aspect, many numerical models have been built up to demonstrate the dynamics of the pantograph-catenary system and to unveil the key influencing factors. There have been many applications developed in recent years. Regarding the catenary, high-tensile loads on the catenary and low-stiffness-variation designs are widely used to improve the dynamic performance. Regarding the pantograph, aerodynamic-friendly designs and active-control technique contribute to the development of high-speed pantograph. But all these methods need not only large investment but long out-of-service. Considering the large scale and heavy service duty of the existing lines, it becomes almost impossible to completely upgrade the existing pantograph-catenary systems. So it is necessary to find practical and efficient methods to exploit the potentials of the existing systems to enhance their dynamic performances.

    This thesis investigates the dynamic behaviour of the Swedish pantograph-catenary systems and proposes methods for better usage. A numerical study on multi-pantograph operation is performed and the relationships between dynamic performance and some key parameters is established. By studying the multi-pantograph operation at short spacing distance, a method to use the leading pantograph as auxiliary pantograph is proposed to increase the operational speed on the soft catenary system. To ensure operational safety in abnormal conditions, numerical studies on pantograph raising/lowering processes and in catenary overlap sections are performed. By studying the influence of the lumped-mass on the dynamic performance, it shows that it is even possible to implement some artificial tuned-masses on the catenary for dynamic optimization.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 42 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2017:60
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-214464 (URN)978-91-7729-524-2 (ISBN)
Public defence
2017-10-18, F3, Lindstedtsvägen 26, stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170915

Available from: 2017-09-15 Created: 2017-09-14 Last updated: 2017-09-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Liu, ZhendongJönsson, Pär-AndersStichel, Sebastian
By organisation
Aeronautical and Vehicle Engineering
In the same journal
Vehicle System Dynamics
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf