Change search
ReferencesLink to record
Permanent link

Direct link
OLLDA: A Supervised and Dynamic Topic Mining Framework in Twitter
KTH, School of Information and Communication Technology (ICT), Software and Computer systems, SCS.
KTH, School of Information and Communication Technology (ICT), Software and Computer systems, SCS.
2015 (English)In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), 2015, 1354-1359 p.Conference paper (Refereed)
Abstract [en]

Analyzing media in real-time is of great importance with social media platforms at the epicenter of crunching, digesting and disseminating content to individuals connected to these platforms. Within this context, topic models, specially LDA, have gained strong momentum due to their scalability, inference power and their compact semantics. Although, state of the art topic models come short in handling streaming large chunks of data arriving dynamically onto the platform, thus hindering their quality of interpretation as well as their adaptability to information overload. As a result, in this manuscript we propose for a labelled and online extension to LDA (OLLDA), which incorporates supervision through external labeling and capability of quickly digesting real-time updates thus making it more adaptive to Twitter and platforms alike. Our proposed extension has capability of handling large quantities of newly arrived documents in a stream, and at the same time, is capable of achieving high topic inference quality given the short and often sloppy text of tweets. Our approach mainly uses an approximate inference technique based on variational inference coupled with a labeled LDA model. We conclude by presenting experiments using a one year crawl of Twitter data that shows significantly improved topical inference as well as temporal user profile classification when compared to state of the art baselines.

Place, publisher, year, edition, pages
2015. 1354-1359 p.
National Category
Computer and Information Science
URN: urn:nbn:se:kth:diva-192057DOI: 10.1109/ICDMW.2015.132ISI: 000380556700183ScopusID: 2-s2.0-84964797270ISBN: 978-1-4673-8493-3OAI: diva2:958261
IEEE 15th International Conference on Data Mining Workshops (ICDMW), NOV 14-17, 2015, ATlantic city, NJ

QC 20160906

Available from: 2016-09-06 Created: 2016-09-05 Last updated: 2016-09-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Jaradat, ShathaMatskin, Mihhail
By organisation
Software and Computer systems, SCS
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link