Change search
ReferencesLink to record
Permanent link

Direct link
Navigation of Mobile Robots in Human Environments with Deep Reinforcement Learning
KTH, School of Computer Science and Communication (CSC).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Navigering av mobila robotar i mänskliga miljöer med deep reinforcement learning (Swedish)
Abstract [en]

For mobile robots which operate in human environments it is not sufficient to simply travel to their target destination as quickly as possible. Instead, mobile robots in human environments need to travel to their destination safely,  keeping a comfortable distance to humans and not colliding with any obstacles along the way. As the number of possible human-robot interactions is very large, defining a rule-based navigation approach is difficult in such highly dynamic environments. Current approaches solve this task by predicting the trajectories of humans in the scene and then planning a collision-free path. However, this requires separate components for detecting and predicting human motion and does not scale well to densely populated environments. Therefore, this work investigates the use of deep reinforcement learning for the navigation of mobile robots in human environments. This approach is based on recent research on utilizing deep neural networks in reinforcement learning to successfully play Atari 2600 video games on human level. A deep convolutional neural network is trained end-to-end from one-dimensional laser scan data to command velocities. Discrete and continuous action space implementations are evaluated in a simulation and are shown to outperform a Social Force Model baseline approach on the navigation problem for mobile robots in human environments. 

Place, publisher, year, edition, pages
Keyword [en]
Deep Reinforcement Learning Mobile Robot Navigation Human Environment
National Category
Computer Science
URN: urn:nbn:se:kth:diva-192318OAI: diva2:967644
External cooperation
Educational program
Master of Science - Computer Science
Available from: 2016-09-09 Created: 2016-09-09 Last updated: 2016-09-09Bibliographically approved

Open Access in DiVA

Thesis(1345 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 1345 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 114 hits
ReferencesLink to record
Permanent link

Direct link