Change search
ReferencesLink to record
Permanent link

Direct link
Evaluation of Distribution Function Models for ICRH-induced Impurity Transport in Tokamaks
KTH, School of Electrical Engineering (EES).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Fusion power is the utilization of the energy released in nuclear fusion reactions. It has the potential to become an energy source which is more sustainable, safer and cleaner than the primary energy sources today. The fundamental problem for fusion power is energy confinement. Impurity ions are a major source of energy confinement loss in magnetic confinement fusion devices. Hence, impurity transport in fusion plasma is an important field to study. Ion cyclotron resonance heating (ICRH) has been shown both experimentally and theoretically to influence impurity transport in tokamaks. A poloidal asymmetry in the minority ions produces an electric potential, which causes impurity accumulation on the inboard side of the tokamak. Poloidal asymmetry in the impurity density induces a net radial impurity flux over a flux surface.

This project has compared the ICRH-induced impurity transport for four approximate minority ion distribution function models with numerical results from the SELFO code. This has been done computationally for JET-like, concentric tokamak geometry with deuterium plasma, hydrogen minority ions, and tungsten impurities. Two models, the so-called bi-Maxwellian and LFS bi-Maxwellian model, are used in existing literature. Two further models are introduced, called the tri-Maxwellian and LFS tri-Maxwellian model. Unlike the bi-Maxwellian models, these models take into account the existence of thermal and fast ions in the minority population.

The results show that there are noticeable differences between the different models, in particular when the resonant surface is on the inboard side. The tri-Maxwellian models offer a clear improvement over the bi-Maxwellian models compared with SELFO. However, there are some features in the SELFO results that none of the approximate models predict, this is because the models neglects wide orbits. A possible barrier in the radial transport has also been identified at flux surfaces where the impurity density asymmetry closely resembles the magnetic field strength asymmetry. The LFS bi-Maxwellian model predicts the radial position of the barrier most accurately and reliably compared with SELFO.

Abstract [sv]

Fusionsenergi är utnyttjandet av energi som frigörs i kärnfusionsreaktioner, och har potential för att bli en energikälla som är mer hållbar, säkrare och renare än de primära energikällorna idag. Det grundläggande problemet för fusionskraft är energiinneslutning. Förorenande joner är en viktig källa för förlust av energiinneslutning i fusionsanläggningar med magnetisk inneslutning. Därför är föroreningstransport i fusionsplasma ett viktigt ämnesområde. Joncyklotronresonansupphettning (ICRH) har visats både experimentellt och teoretiskt att påverka föroreningstransport i tokamaker. En poloidal asymmetri i minoritetsjonerna ger en elektrisk potential, som orsakar förorening samlas på den inre sidan av fusionsanläggningen. Poloidal asymmetri i föroreningsdensiteten på ett fluxyta inducerar en netto radialflux över fluxytan. Detta projekt har jämfört ICRH-inducerad föroreningstransport för fyra approximativa distributionsfunktionsmodeller för minoritetsjon med numeriska resultat från SELFO koden. Detta har gjorts med beräkningar för JET-liknande, kon-centrisk tokamak-geometri med deuterium-plasma, väte som minoritetsjoner, och volfram som föroreningsjoner. Två modeller, s.k. bi-Maxwellian- och LFS bi-Maxwellianmodellen, används i existerande litteratur. Ytterligare två modeller introduceras, kallad tri-Maxwellian- och LFS tri-Maxwellianmodellen. Dessa modeller tar hänsyn till förekomsten av termiska och snabba joner i minoritetsbefolkningen. Resultaten visar att det finns tydliga skillnader mellan de olika modellerna, särskilt när resonansytan är på den inre sidan. Tri-Maxwellianmodellerna visar en klar förbättring över bi-Maxwellianmodellerna jämfört med SELFO. Det finns dock vissa särdrag i resultaten från SELFO som ingen av de approximative modellerna förutsäger, eftersom modellerna försummar breda banor. En möjlig barriär i den radiella transporten har också blivit identifierat på fluxytor där asymmetrin i föroreningsdensiteten liknar asymmetrin i den magnetiska fältstyrkan. LFS bi-Maxwellianmodellen förutsäger den radiella positionen av barriären mest noggrant och tillförlitligt jämfört med SELFO.

Place, publisher, year, edition, pages
2016. , 58 p.
EES Examensarbete / Master Thesis, TRITA-EE 2016:111
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:kth:diva-192460OAI: diva2:968655
Available from: 2016-09-12 Created: 2016-09-12 Last updated: 2016-09-12Bibliographically approved

Open Access in DiVA

fulltext(5194 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 5194 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering (EES)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 2 hits
ReferencesLink to record
Permanent link

Direct link