Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Efficient Semi-Lagrangian Algorithm for Simulation of Corona Discharges: The Position-State Separation Method
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0001-5378-701X
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0002-6375-6142
2016 (English)In: IEEE Transactions on Plasma Science, ISSN 0093-3813, E-ISSN 1939-9375, Vol. 44, no 11, 1-10 p.Article in journal (Refereed) Published
Abstract [en]

An efficient algorithm without flux correction for simulation of corona discharges is proposed. The algorithm referred to as the position-state separation method (POSS) is used to solve convection-dominated continuity equations commonly present in corona discharges modelling. The proposed solution method combines an Eulerian scheme for the solution of the convective acceleration, the diffusion and the reaction subproblems, and a Lagrangian scheme for the solution of the linear convection subproblem. Several classical numerical experiments in different dimensions and coordinate systems are conducted to demonstrate the excellent performance of POSS regarding low computational cost, robustness, and high-resolution. It is shown that the time complexity of the method when dealing with the convection of charged particles increases linearly with the number of unknowns. For the simulation of corona discharges where local electric fields do not change strongly in time, the time step of POSS could be much larger than the Courant–Friedrichs–Lewy (CFL) time step. These special features enable POSS to have great potential in modeling of corona discharges in long interelectrode gaps and for long simulation times.

Place, publisher, year, edition, pages
IEEE Press, 2016. Vol. 44, no 11, 1-10 p.
Keyword [en]
Semi-Lagrangian method; simulation; corona discharges; convection-dominated
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Fusion, Plasma and Space Physics
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-193002DOI: 10.1109/TPS.2016.2609504ISI: 000388795400001Scopus ID: 2-s2.0-84991688609OAI: oai:DiVA.org:kth-193002DiVA: diva2:974122
Note

QC 20160928

Available from: 2016-09-24 Created: 2016-09-24 Last updated: 2017-11-21Bibliographically approved
In thesis
1. Physics of Electrical Discharge Transitions in Air
Open this publication in new window or tab >>Physics of Electrical Discharge Transitions in Air
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Electrical discharges with a variety of different forms (streamers, glow corona, leaders, etc.) broadly exist in nature and in industrial applications. Under certain conditions, one electrical discharge can be transformed into another form. This thesis is aimed to develop and use numerical simulation models in order to provide a better physical understanding of two of such transitions, namely the glow-to-streamer and the streamer-to-leader transitions in air.

In the first part, the thesis includes the two-dimensional simulation of the glow-to-streamer transition under a fast changing background electric field. The simulation is performed with a fluid model taking into account electrons. An efficient semi-Lagrangian algorithm is proposed to solve the convection-dominated continuity equations present in the model. The condition required for the glow-to-streamer transition is evaluated and discussed. In order to enable such simulations for configurations with large interelectrode gaps and long simulation times, an efficient simplified model for glow corona discharges and their transition into streamers is also proposed.

The second part of the thesis is dedicated to investigate the dynamics of the streamer-to-leader transition in long air gaps at atmospheric pressure. The transition is studied with a one-dimensional thermo-hydrodynamic model and a detailed kinetic scheme for N2/O2/H2O mixtures. In order to evaluate the effect of humidity, the kinetic scheme includes the most important reactions with the H2O molecule and its derivatives. The analysis includes the simulation of the corresponding streamer bursts, dark periods and aborted leaders that may occur prior to the inception of a stable leader. The comparison between the proposed model and the widely-used model of Gallimberti is also presented.

Abstract [sv]

Elektriska urladdningar av olika former (streamers (från engelska), glöd-korona, ledare, etc.) förekommer i stor utsträckning i naturen och i industriella applikationer. Under vissa förhållanden kan en elektrisk urladdning omvandlas till en annan form av elektrisk urladdning. Denna avhandling syftar till att utveckla och använda numeriska simuleringsmodeller för att ge en bättre fysikalisk förståelse av två sådana övergångar, nämligen glöd-till-streamer- och streamer-till-ledar-övergångar, i luft.

I den första delen, avhandlas en tvådimensionell simulering av glöd-till-streamer-övergången med ett hastigt föränderligt elektriskt fält i bakgrunden. Simuleringen utförs med en flödesmodell som tar hänsyn till elektronerna. En effektiv semi-Lagrangesk algoritm föreslås för att lösa de konvektionsdominerade kontinuitetsekvationerna i modellen. Vidare utvärderas och diskuteras förutsättningarna för glöd-till-streamer-övergången. För att möjliggöra sådana simuleringar i konfigurationer med stora elektrodavstånd och långa simuleringstider, föreslås också en effektiv och förenklad modell för glöd-korona-urladdningar samt deras övergång till streamers.

Den andra delen av avhandlingen är tillägnad att undersöka dynamiken i streamer-till-ledar-övergångar över långa avstånd i luft, under atmosfäriskt tryck. Övergången studeras med en endimensionell termohydrodynamisk modell och en detaljerad kinetisk modell för blandningar av N2/O2/H2O. För att utvärdera effekten av luftfuktighet, innefattar den kinetiska modellen de viktigaste reaktionerna med H2O-molekylen och dess derivat. Analysen innefattar simuleringen av motsvarande streamer-kedjor, mörka perioder och avbrutna ledare som kan förekomma före starten av en stabil ledare. En jämförelse mellan den föreslagna modellen och den allmänt använda modellen av Gallimberti presenteras också.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 52 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2017:028
Keyword
electrical discharges, transition, streamers, glow corona, leader discharges, elektriska urladdningar, övergång, streamers, glöd-korona, ledarurladdningar
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-205401 (URN)978-91-7729-348-4 (ISBN)
Public defence
2017-05-24, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170418

Available from: 2017-04-18 Created: 2017-04-17 Last updated: 2017-04-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttps://arxiv.org/abs/1503.03965

Authority records BETA

Liu, LipengBecerra, Marley

Search in DiVA

By author/editor
Liu, LipengBecerra, Marley
By organisation
Electromagnetic Engineering
In the same journal
IEEE Transactions on Plasma Science
Other Electrical Engineering, Electronic Engineering, Information EngineeringFusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf