Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impacts of thermo-physical properties of gas and liquid phases on design of absorber for CO2 capture using monoethanolamine
KTH, School of Chemical Science and Engineering (CHE).
Show others and affiliations
2016 (English)In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 52, 190-200 p.Article in journal (Refereed) Published
Abstract [en]

Absorption of CO2 with aqueous amines in post-combustion capture is characterized as a heat and mass transfer processes with chemical reaction, which is sensitively affected by the thermo-physical properties of fluids. In order to optimize the design of the absorber of CO2 capture process, in this paper, the impacts of thermo-physical properties on the column design were investigated. Furthermore, the property impacts on the capital cost of the absorber unit were also identified and analyzed. Results show that the gas phase density has the most significant effect on the column diameter. Underestimation of the gas phase density of 10% may result in an increase of about 6% of the column diameter. For the packing height, the liquid phase density has the most significant effect. 10% underestimation of the liquid phase density may result in an increase of 8% of the packing height. Moreover, the effect from the liquid phase viscosity is also significant. For the annual capital cost, the liquid phase density also shows the most significant effect. Underestimation of the liquid phase density of 10% leads to the cost overestimation of $1.4 million for the absorption column for a 400 MW coal-fired power plant. Therefore, the development of the flue gas density model and liquid phase density and viscosity models of the aqueous amine solution with CO2 loading should be prioritized.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 52, 190-200 p.
Keyword [en]
Post-combustion capture, Chemical absorption, Property impact, Density, Viscosity Packing height
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-192717DOI: 10.1016/j.ijggc.2016.06.012ISI: 000381728300016Scopus ID: 2-s2.0-84978193479OAI: oai:DiVA.org:kth-192717DiVA: diva2:974461
Note

QC 20160926

Available from: 2016-09-26 Created: 2016-09-20 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Yan, Jinyue

Search in DiVA

By author/editor
Tan, YutingYan, Jinyue
By organisation
School of Chemical Science and Engineering (CHE)Energy Processes
In the same journal
International Journal of Greenhouse Gas Control
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf