Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Intelligent shell feedback control in EXTRAP T2R reversed field pinch with partial coverage of the toroidal surface by a discrete active coil array
KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.ORCID iD: 0000-0002-5259-0458
KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
2006 (English)In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 48, no 1, 1-14 p.Article in journal (Refereed) Published
Abstract [en]

An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m ≤ 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (N c) directions (Mc × Nc ≤ 2 × 32 and Mc × Nc ≤ 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral- derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional- derivative control for high proportional gain is seen in the experiments.

Place, publisher, year, edition, pages
2006. Vol. 48, no 1, 1-14 p.
Keyword [en]
Algorithms, Parallel processing systems, Plasma applications, Three term control systems
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-5429DOI: 10.1088/0741-3335/48/1/001ISI: 000235451100002Scopus ID: 2-s2.0-29244450166OAI: oai:DiVA.org:kth-5429DiVA: diva2:9791
Note
QC 20100920Available from: 2006-03-08 Created: 2006-03-08 Last updated: 2017-11-21Bibliographically approved
In thesis
1. Resistive Wall Mode Stability and Control in the Reversed Field Pinch
Open this publication in new window or tab >>Resistive Wall Mode Stability and Control in the Reversed Field Pinch
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Control of MHD instabilities using a conducting wall together with external magnetic fields is an important route to improved performance and reliability in fusion devices. Active control of MHD modes is of interest for both the Advanced Tokamak and the Reversed Field Pinch (RFP) configurations. A wide range of unstable, current driven MHD modes is present in the RFP. An ideally conducting wall facing the plasma can in principle provide stabilization to these modes. However, a real, resistive wall characterized by a wall field diffusion time, cannot stabilize the ideal MHD modes unless they rotate with Alfvénic velocity, which is usually not the case. With a resistive wall, the ideal modes are converted into resistive wall modes (RWM) with growth rates comparable to the inverse wall time. Resistive wall modes have been studied in the EXTRAP T2R thin shell RFP device. Growth rates have been measured and found in agreement with linear MHD stability calculations. An advanced system for active control has been developed and installed on the EXTRAP T2R device. The system includes an array of 128 active saddle coils, fully covering the torus surface. Experiments on EXTRAP T2R have for the first time demonstrated simultaneous active suppression of multiple independent RWMs. In experiments with a partial array, coupling of different modes due to the limited number of feedback coils has been observed, in agreement with theory. Different feedback strategies, such as the intelligent shell, the rotating shell, and mode control have been studied. Further, feedback operation with different types of magnetic field sensors, measuring either the radial or the toroidal field components have been compared

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. viii, 46 p.
Series
Trita-EE, ISSN 1653-5146 ; 2006:005
Keyword
Resistive wall modes, RWM, active control, feedback, MHD modes, Reversed-Field pinch, RFP, intelligent shell, mode control
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-3867 (URN)91-7178-285-0 (ISBN)
Public defence
2006-03-17, H1, Teknikringen 33, Stockholm, 10:30
Opponent
Supervisors
Note
QC 20100929Available from: 2006-03-08 Created: 2006-03-08 Last updated: 2010-09-29Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Brunsell, Per

Search in DiVA

By author/editor
Yadikin, DmitriyBrunsell, PerDrake, James Robert
By organisation
Alfvén Laboratory Centre for Space and Fusion Plasma Physics
In the same journal
Plasma Physics and Controlled Fusion
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf