Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Approximate Bayesian Learning of Partition Directed Acyclic Graphs
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Approximativ bayesiansk inlärning av partitionerade acykliska grafer (Swedish)
Abstract [en]

Partition directed acyclic graphs (PDAGs) is a model whereby the conditional probability tables (CPTs) are partitioned into parts with equal probability. In this way, the number of parameters that need to be learned can be significantly reduced so that some problems become more computationally feasible. PDAGs have been shown to be connected to labeled DAGs (LDAGs) and the connection is summarized here. Furthermore, a clustering algorithm is compared to an exact algorithm for determining a PDAG. To evaluate the algorithm, we use it on simulated data where the expected result is known.

Abstract [sv]

Partitionerade riktade acykliska grafer (engelska: PDAGs) är en modell där tabeller över betingade sannolikheter partitioneras i delar med lika sannolikhet. Detta gör att antalet parametrar som ska bestämmas kan reduceras, vilket i sin tur gör problemet beräkningsmässigt enklare. Ett känt samband mellan PDAGs och betecknade riktade acykliska grafer (engelska: LDAGs) sammanfattas här. Sedan jämförs en klustringsalgoritm med en algoritm som exakt bestämmer en PDAG. Klustringsalgoritmens pålitlighet kollas genom att använda den på simulerad data där det förväntade resultatet är känt.

Place, publisher, year, edition, pages
2016.
Series
TRITA-MAT-E, 2016:61
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-192853OAI: oai:DiVA.org:kth-192853DiVA: diva2:981303
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2016-09-29 Created: 2016-09-21 Last updated: 2016-09-29Bibliographically approved

Open Access in DiVA

fulltext(619 kB)54 downloads
File information
File name FULLTEXT01.pdfFile size 619 kBChecksum SHA-512
ee090cdf7602715004ec49832fc8da7804b072653ec80a4dc68b0eca0fa4a721ade4d399408510dfade68b359493c18ac3d63cfb29827ada8cceb477c633a3b0
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 54 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf