Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase-sensitive wave-packet dynamics caused by a breakdown of the rotating-wave approximation
KTH, School of Biotechnology (BIO).ORCID iD: 0000-0003-1269-8760
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
2006 (English)In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 73, no 2, 023409Article in journal (Refereed) Published
Abstract [en]

The water dimer driven by strong infrared field is studied in the two-vibrational mode approximation. A pump pulse excites the OH vibrational modes and creates a coherent superposition of vibrational states of the low-frequency OO mode. The solution of the Schrodinger equation in the adiabatic approximation shows a strong sensitivity of the OO vibrational wave-packet dynamics to the absolute phase of the pump field. This effect appears due to a break down of the rotating-wave approximation when the Rabi frequency of the OH vibrational transition approaches the frequency of the OH mode. The violation of the rotating wave approximation modifies considerably the interaction of the probe radiation with the laser-driven molecule.

Place, publisher, year, edition, pages
2006. Vol. 73, no 2, 023409
Keyword [en]
Approximation theory, Infrared radiation, Laser pulses, Nonlinear equations, Water
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-5491DOI: 10.1103/PhysRevA.73.023409ISI: 000235668100132Scopus ID: 2-s2.0-33144456310OAI: oai:DiVA.org:kth-5491DiVA: diva2:9874
Note

QC 20100825

Available from: 2006-03-15 Created: 2006-03-15 Last updated: 2017-11-21Bibliographically approved
In thesis
1. Pulse Propagation in Nonlinear Media and Photonic Crystals
Open this publication in new window or tab >>Pulse Propagation in Nonlinear Media and Photonic Crystals
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

The present thesis is devoted to theoretical studies of pulse propagation of light through linear and nonlinear media, and of light-induced nuclear dynamics.

The first part of the thesis addresses propagation of light pulses in linear periodical media - photonic crystals. The main accent was put on studies of the angular properties of two qualitatively different types of photonic crystals: holographic photonic crystals, and impurity band based photonic crystals. The anisotropy of band structure, group velocity and pulse delay with respect to the light polarization are analyzed.

In the second part of the thesis a strict theory of nonlinear propagation of a few strong interacting light beams is presented. The key idea of this approach is a self-consistent solution of the nonlinear wave equation and the density matrix equations of the material. This technique is applied to studies of dynamics of cavityless lasing generated by ultra-fast multi-photon excitation. It is shown that interaction of co- and counter-propagating pulses of amplified spontaneous emission (ASE) affects the dynamics and efficiency of nonlinear conversion. Our dynamical theory allows to explain the asymmetric spectral properties of the forward and backward ASE pulses, which were observed in recent experiment with different dye molecules. It is shown that the ASE spectral profile changes drastically when the pump intensity approaches the threshold level. The effect of the temporal self-pulsation of ASE is studied in detail.

The third part of the thesis is devoted to light-induced nuclear dynamics. Time- and frequency-resolved X-ray spectroscopy of molecules driven by strong and coherent infrared (IR) pulses shows that the phase of the IR field strongly influences the trajectory of the nuclear wave packet, and hence, the X-ray spectrum. Such a dependence arises due to the interference of one (X-ray) and two-photon (X-ray + IR) excitation channels. The phase of the light influences the dynamics also when the Rabi frequency approaches the vibrational frequency, breaking down the rotating-wave approximation. The probe X-ray spectra are also sensitive to the delay time, the duration, and the shape of the pulses. The evolution of the nuclear wave packets in the dissociative core-excited state affects the dynamics of resonant Auger scattering from fixed-in-space molecules. One of the important dynamical effects is the atomic-like resonance which experiences electronic Doppler shift. We predict that the scattering of the Auger electrons by nearby atoms leads to new Doppler shifted resonances. These extra resonances show sharp maxima in the bond directions, which makes them very promising as probes for local molecular structure using energy and angular resolved electron-ion coincidence techniques. Our theory provides prediction of several new effects, but also results that are in good agreement with the available experimental data.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. x, 49 p.
Keyword
Photonic Crystals, Nonlinear optics, X-ray spectroscopy
National Category
Theoretical Chemistry
Identifiers
urn:nbn:se:kth:diva-3886 (URN)91-7178-275-3 (ISBN)
Public defence
2006-03-31, FB42, AlbaNova, Roslagstullsbaken 21, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100906Available from: 2006-03-15 Created: 2006-03-15 Last updated: 2011-11-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000073000002023409000001&idtype=cvips&gifs=yes

Authority records BETA

Kimberg, Victor

Search in DiVA

By author/editor
Kimberg, VictorGuimaraes, Freddy FernandesFelicissimo, Viviane C.Gel'mukhanov, Faris
By organisation
School of Biotechnology (BIO)Theoretical Chemistry (closed 20110512)
In the same journal
Physical Review A. Atomic, Molecular, and Optical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf