Change search
ReferencesLink to record
Permanent link

Direct link
Bridge Monitoring to Allow for Reliable Dynamic FE Modelling: A Case Study of the New Årsta Railway Bridge
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges (name changed 20110630).
2006 (English)Licentiate thesis, monograph (Other scientific)
Abstract [en]

Today’s bridge design work in many cases demands a trustworthy dynamic analysis instead of using the traditional dynamic amplification factors. In this thesis a reliable 3D Bernoulli-Euler beam finite element model of the New Årsta Railway Bridge was prepared for thorough dynamic analysis using in situ bridge monitoring for correlation. The bridge is of the concrete box girder type with a heavily reinforced and prestressed bridge deck. The monitoring system was designed for long term monitoring with strain transducers embedded in the concrete and accelerometers mounted inside the edge beams and at the lower edge of the track slab.

The global finite element model used the exact bridge geometry but was simplified regarding prestressing cables and the two railway tracks. The prestressing cables and the tracks were consequently not included and an equivalent pure concrete model was identified.

A static macadam train load was eccentrically placed on one of the bridge’s two tracks. By using Vlasov’s torsional theory and thereby including constrained warping a realistic modulus of elasticity for the concrete without prestressing cables and stiffness contribution from the railway tracks was found. This was allowed by comparing measured strain from strain transducers with the linear elastic finite element model’s axial stresses. Mainly three monitoring bridge sections were used, each of which was modelled with plane strain finite elements subjected to sectional forces/moments from a static macadam train load and a separately calculated torsional curvature.

From the identified modulus of elasticity the global finite element model was updated for Poisson’s ratio and material density (mass) to correspond with natural frequencies from the performed signal analysis of accelerometer signals. The influence of warping on the natural frequencies of the global finite element model was assumed small and the bridge’s torsional behaviour was modelled to follow Saint-Venant’s torsional theory.

A first preliminary estimation of modal damping ratios was included. The results indicated that natural frequencies were in accordance between modelling and signal analysis results, especially concerning high energy modes. Estimated damping ratios for the first vibration modes far exceeded the lower limit value specified in bridge design codes and railway bridge dynamic analysis recommendations.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2006. , xvi, 151 p.
Trita-BKN. Bulletin, ISSN 1103-4270 ; 81
Keyword [en]
bridge monitoring, FE modelling, signal analysis, torsion, warping, modulus of elasticity, natural frequency, damping, finite differences
National Category
Civil Engineering
URN: urn:nbn:se:kth:diva-3897OAI: diva2:9925
2006-04-20, Biblioteket, Bygg, Brinellvägen 34, Stockholm, 14:00
QC 20101124Available from: 2006-04-04 Created: 2006-04-04 Last updated: 2012-02-21Bibliographically approved

Open Access in DiVA

fulltext(3743 kB)5256 downloads
File information
File name FULLTEXT01.pdfFile size 3743 kBChecksum SHA-1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wiberg, Johan
By organisation
Structural Design and Bridges (name changed 20110630)
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 5256 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1343 hits
ReferencesLink to record
Permanent link

Direct link