Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adapting the Deep Burn In-Core Fuel Management Strategy for the Gas Turbine - Modular Helium Reactor to a Uranium-Thorium Fue
KTH, School of Engineering Sciences (SCI), Physics.
KTH, School of Engineering Sciences (SCI), Physics.
2005 (English)In: Annals of Nuclear Energy, ISSN 0306-4549, E-ISSN 1873-2100, Vol. 32, no 16, 1750-1781 p.Article in journal (Refereed) Published
Abstract [en]

In 1966, Philadelphia Electric has put into operation the Peach Bottom I nuclear reactor, it was the first high temperature gas reactor (HTGR); the pioneering of the helium-cooled and graphite-moderated power reactors continued with the Fort St. Vrain and THTR reactors, which operated until 1989. The experience on HTGRs lead General Atomics to design the gas turbine - modular helium reactor (GT-MHR), which adapts the previous HTGRs to the generation IV of nuclear reactors. One of the major benefits of the GT-MHR is the ability to work on the most different types of fuels: light water reactors waste, military plutonium, MOX and thorium. In this work, we focused on the last type of fuel and we propose a mixture of 40% thorium and 60% uranium. In a uranium-thorium fuel, three fissile isotopes mainly sustain the criticality of the reactor: U-235, which represents the 20% of the fresh uranium, U-233, which is produced by the transmutation of fertile Th-212, and Pu-239, which is produced by the transmutation of fertile U-238. In order to compensate the depletion of U-235 with the breeding of U-233 and Pu-239, the quantity of fertile nuclides must be much larger than that one of 235 U because of the small capture cross-section of the fertile nuclides, in the thermal neutron energy range, compared to that one of U-235. At the same time, the amount of U-235 must be large enough to set the criticality condition of the reactor. The simultaneous satisfaction of the two above constrains induces the necessity to load the reactor with a huge mass of fuel; that is accomplished by equipping the fuel pins with the JAERI TRISO particles. We start the operation of the reactor with loading fresh fuel into all the three rings of the GT-MHR and after 810 days we initiate a refueling and shuffling schedule that, in 9 irradiation periods, approaches the equilibrium of the fuel composition. The analysis of the k(eff) and mass evolution, reaction rates, neutron flux and spectrum at the equilibrium of the fuel composition, highlights the features of a deep burn in-core fuel management strategy for a uranium-thorium fuel.

Place, publisher, year, edition, pages
2005. Vol. 32, no 16, 1750-1781 p.
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:kth:diva-5548DOI: 10.1016/j.anucene.2005.07.002ISI: 000233056800003Scopus ID: 2-s2.0-27144468977OAI: oai:DiVA.org:kth-5548DiVA: diva2:9948
Note
QC 20100922Available from: 2006-04-05 Created: 2006-04-05 Last updated: 2017-11-21Bibliographically approved
In thesis
1. Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor
Open this publication in new window or tab >>Advanced In-Core Fuel Cycles for the Gas Turbine-Modular Helium Reactor
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

In 1789 a German chemist, Martin Heinrich Klaproth, announced the discovery of a new element: uranium; few years later, the head of father of the modern chemistry, Antoine Lavoisier, was swept away by guillotine: a new era was destined to be opened, either where energy would have been produced in large scale by nuclear processes delivering hundreds of times the energy of chemical processes or where a mass of people, revolutionary or not, would have been melted down into a couple of seconds. After a quite long time, on the 2nd December 1942, the first nuclear reactor has been put into operation by Enrico Fermi in Chicago; few years later, came also the dark side utilization of fissile materials in Hiroshima and Nagasaki. Since those moments, three power plants generations succeeded, until the current one which is the generation IV of nuclear reactors. The latter has the goal of generating electricity in a safe manner, for the core is designed to provide an effective passive cooling of the decay heat. Amid generation IV of nuclear power plants, the Gas Turbine – Modular Helium Reactor, designed by General Atomics, is the only core with an energy conversion efficiency of 50%; the above consideration, coupled to construction and operation costs lower than ordinary Light Water Reactors, renders the Gas Turbine – Modular Helium reactor rather unequaled.

In the present studies we investigated the possibility to operate the GT-MHR with two types of fuels: LWRs waste and thorium; since thorium is made of only fertile 232Th, we tried to mix it with pure 233U, 235U or 239Pu; ex post facto, only uranium isotopes allow the reactor operation, that induced us to examine the possibility to use a mixture of uranium, enriched 20% in 235U, and thorium. We performed all calculations by the MCNP and MCB codes, which allowed to model the reactor in a very detailed threedimensional geometry and to describe the nuclides transmutation in a continuous energy approach; finally, we completed our studies by verifying the influence of the major nuclear data libraries, JEFF, JENDL and ENDF/B, on the obtained results.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. x,60 p.
Series
TRITA-FYS, ISSN 0280-316X ; 2006.25
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-3901 (URN)91-7178-328-8 (ISBN)
Public defence
2006-04-21, Sal FA31, AlvaNova, Roslagstullsbacken 21, Stockholm, 14:00
Opponent
Supervisors
Note

QC 20100922

Available from: 2006-04-05 Created: 2006-04-05 Last updated: 2014-12-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1R-4H3BM41-1&_user=4478132&_handle=V-WA-A-W-C-MsSAYWW-UUW-U-AAVZYBVWUE-AAVVVACUUE-DDDCEUCUV-C-U&_fmt=summary&_coverDate=11%2F30%2F2005&_rdoc=3&_orig=browse&_srch=%23toc%235681%232005%23999679983%23607216!&_cdi=5681&view=c&_acct=C000034958&_version=1&_urlVersion=0&_userid=4478132&md5=fa8fb5b5f7d0097128541e8603da745d

Search in DiVA

By author/editor
Talamo, AlbertoGudowski, Waclaw
By organisation
Physics
In the same journal
Annals of Nuclear Energy
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 96 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf