Change search
Refine search result
123456 1 - 50 of 288
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aaditya, V. B.
    et al.
    Bharathesh, B. M.
    KTH.
    Harshitha, R.
    Chaluvaraju, B. V.
    Raghavendra, U. P.
    Murugendrappa, M. V.
    Study of dielectric properties of polypyrrole/titanium dioxide and polypyrrole/titanium dioxide-MWCNT nano composites2018In: Journal of materials science. Materials in electronics, ISSN 0957-4522, E-ISSN 1573-482X, Vol. 29, no 4, p. 2848-2859Article in journal (Refereed)
    Abstract [en]

    The polypyrrole/titanium dioxide nano composites and polypyrrole/titanium dioxide-MWCNT nano composites were synthesized by chemical polymerization technique in the presence of an ammonium persulphate (oxidizing agent). Different concentrations viz. 15, 30, 45 and 60 wt% of titanium dioxide (TiO2) as well as mixture of TiO2-MWCNT in polypyrrole (PPy) respectively were used in the present study. The nano composites have almost spherical type shaped particles which have cluster formation as confirmed from SEM photos. The XRD graphs reveal that the PPy/TiO2 (PT) nano composites have shown the semi-crystalline nature and also, the graphs indicate the changeover of the structure of PPy/TiO2-MWCNT (PTM) nano composites from amorphous to semi-crystalline nature. From the FTIR figures, shift in wavenumber towards lower side is noticed in the case of PT and PTM nano composites when compared to PPy. The dielectric properties such as dielectric constant, dielectric loss and tangent loss have shown good behavior. This reveals that, the TiO2 as well as mixture of TiO2-MWCNT particles have shown strong dependence on PPy and helps to form good composites. So, the nano composites are good dielectric materials.

  • 2.
    Abedin, Ahmad
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Zurauskaite, Laura
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Asadollahi, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Garidis, Konstantinos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Jayakumar, Ganesh
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Malm, B. Gunnar
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Hellström, Per-Erik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Östling, Mikael
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Germanium on Insulator Fabrication for Monolithic 3-D Integration2018In: IEEE Journal of the Electron Devices Society, ISSN 2168-6734, Vol. 6, no 1, p. 588-593Article in journal (Refereed)
    Abstract [en]

    A low temperature (T-max = 350 degrees C) process for Germanium (Ge) on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this paper. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding and an etch-back process using Si0.5Ge0.5 as an etch-stop layer. GOI substrates with surface roughness below 0.5 nm, 0.15% tensile strain, thickness nonuniformity of less than 3 nm and residual p-type doping of less than 1016 cm(-3) were fabricated. Ge pFETs are fabricated (T-max = 600 degrees C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of -0.18 V and 60% higher mobility than the SOI pFET reference devices.

  • 3.
    Adhikari, Arindam
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Claesson, Per M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Pani, Jinshan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    Deidinaitei, Andra
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Blomberg, Eva
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel2008In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 53, no 12, p. 4239-4247Article in journal (Refereed)
    Abstract [en]

    Conducting polyaniline (Pani) was prepared in the presence of methane sulfonic acid (MeSA) as dopant by chemical oxidative polymerization. The Pani-MeSA polymer was characterized by FT-IR, UV-vis, X-ray diffraction (XRD) and impedance spectroscopy. The polyrner was dispersed in polyvinylacetate and coated oil carbon steel samples by a dipping method. The electrochemical behavior and anticorrosion properties of the coating, oil carbon steel in 3% NaCl were investigated using Open-circuit Potential (OCP) versus time of exposure, and electrochemical techniques including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and cyclic voltammetry (CV). During initial exposure, the OCP dropped about 0.35 V and the interfacial resistance increased several times, indicating I certain reduction of the polymer and oxidation of the steel surface. Later the OCP shifted to the noble direction and remained at a stable value during the exposure up to 60 days. The EIS monitoring also revealed the initial change and later stabilization of the coating. The stable high OCP and low coating impedance Suggest that the conducting polymer maintains its oxidative state and provides corrosion protection for carbon steel through out the investigated period. The polarization curves and CV show that the conducting polymer coating induces a passive-like behavior and greatly reduces the corrosion of carbon steel.

  • 4.
    Afrasiabi, Roodabeh
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Jokilaakso, Nima
    KTH, School of Biotechnology (BIO), Protein Technology.
    Schmidt, Torsten
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Björk, P.
    Eriksson Karlström, Amelie
    KTH, School of Biotechnology (BIO), Protein Technology.
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Effect of microwave-assisted silanization on sensing properties of silicon nanoribbon FETs2015In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 209, p. 586-595Article in journal (Refereed)
    Abstract [en]

    An important concern with using silicon nanoribbon field-effect transistors (SiNR FET) for ion-sensing is the pH-response of the gate oxide surface. Depending on the application of the FET sensor, this response has to be chemically manipulated. Thus in silicon oxide-gated pH-sensors with integrated sensor and reference FETS, a surface with high pH-sensitivity, compared to the bare gate oxide, is required in the sensor FETs (SEFET), whereas in the reference FETs (REFET) the surface has to be relatively pH-insensitive. In order to control the sensitivity and chemistry of the oxide surface of the nanoribbons, a silanization reagent with a functional group is often self-assembled on the SiNR surface. Choice of a silanization reaction that results in a self-assembled layer on a silicon oxide surface has been studied extensively over the past decades. However, the effect of various self-assembled layers such as monolayers or mixed layers on the electrical response of SiNR FETs in aqueous solution needs to be exploited further, especially for future integrated SEFET/REFET systems. In this work, we have performed a comprehensive study on 3-aminopropyltriethoxysilane (APTES) silanization of silicon oxide surfaces using microwave (MW) heating as a new biocompatible route to conventional methods. A set of complementary surface characterization techniques (ellipsometry, AFM and ATR-FTIR) was used to analyze the properties of the APTES layer deposited on the silicon surface. We have found that a uniform monolayer can be achieved within 10 min by heating the silanization solution to 75 degrees C using MW heating. Furthermore, electrical measurements suggest that little change in device performance is observed after exposure to MW irradiation. Real-time pH measurements indicate that a uniform APTES monolayer not only reduces the pH sensitivity of SiNR FET by passivating the surface silanol groups, but also makes the device less sensitive to cation concentration in the background electrolyte. Our silanization route proves promising for future chemical surface modification of on-chip REFETs.

  • 5.
    Afzal, Muhammad
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Raza, R.
    Du, S.
    Lima, R.B.d
    Zhu, Bin
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics. Hubei Univ, Fac Phys & Elect Technol, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Peoples R China.
    Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells2015In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 178, p. 385-391Article in journal (Refereed)
    Abstract [en]

    This work reports a new composite BaxCa1-xCoyFe1-yO3-delta (BCCF) cathode material for advanced and low temperature solid oxide fuel cells (SOFCs). The BCCF-based composite material was synthesized by sol gel method and investigated as a catalytic cathode for low temperature (LT) SOFCs. XRD analysis of the as-prepared material revealed the dominating BCCF perovskite structure as the main phase accompanied with cobalt and calcium oxides as the secondary phases resulting into an overall composite structure. Structure and morphology of the sample was observed by Field Emission Scanning Electron Microscope (FE-SEM). In particular, the Ba0.3Ca0.7Co0.8Fe0.2O3-delta (BCCF37) showed a maximum conductivity of 143 S cm(-1) in air at 550 degrees C measured by DC 4 probe method. The BCCF at the optimized composition exhibited much higher electrical conductivities than the commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) perovskite cathode material. A maximum power density of 325 mW cm(-2) at 550 degrees C is achieved for the ceria-carbonate electrolyte fuel cell with BCCF37 as the cathode material.

  • 6.
    Afzal, Muhammad
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Saleemi, Mohsin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Wang, Baoyuan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Xia, Chen
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Zhang, Wei
    He, Yunjuan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Jayasuriya, Jeevan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Zhu, Binzhu
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier2016In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 328, p. 136-142Article in journal (Refereed)
    Abstract [en]

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 degrees C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm(2), while a three layer (anode/ electrolyte/cathode) SOFC has reached only 425 mW/cm(2) at 550 degrees C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 degrees C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  • 7. Al-Hamdi, Abdullah M.
    et al.
    Sillanpaa, Mika
    Bora, Tanujjal
    Dutta, Joydeep
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Efficient photocatalytic degradation of phenol in aqueous solution by SnO2:Sb nanoparticles2016In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 370, p. 229-236Article in journal (Refereed)
    Abstract [en]

    Photodegradation of phenol in the presence of tin dioxide (SnO2) nanoparticles under UV light irradiation is known to be an effective photocatalytic process. However, phenol degradation under solar light is less effective due to the large band gap of SnO2. In this study antimony (Sb) doped tin dioxide (SnO2) nanoparticles were prepared at a low temperature (80 degrees C) by a sol-gel method and studied for its photo catalytic activity with phenol as a test contaminant. The catalytic degradation of phenol in aqueous media was studied using high performance liquid chromatography and total organic carbon measurements. The change in the concentration of phenol affects the pH of the solution due to the by-products formed during the photo-oxidation of phenol. The photoactivity of SnO2:Sb was found to be a maximum for 0.6 wt.% Sb doped SnO2 nanoparticles with 10 mg L-1 phenol in water. Within 2 h of photodegradation, more than 95% of phenol could be removed under solar light irradiation.

  • 8. Ali, A.
    et al.
    Rafique, A.
    Kaleemullah, M.
    Abbas, G.
    Ajmal Khan, M.
    Ahmad, M. A.
    Raza, Rizwan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Chinese Academy of Sciences, China.
    Effect of Alkali Carbonates (Single, Binary, and Ternary) on Doped Ceria: A Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 1, p. 806-818Article in journal (Refereed)
    Abstract [en]

    Samarium-doped ceria (SDC) carbonate has become an attractive electrolyte for fuel cells because of its remarkable ion conductivity and high performance. Different doped ceria-carbonate (single-carbonate SDC, binary-carbonate SDC, and ternary-carbonate SDC) electrolytes were synthesized by the coprecipitation/oxalate method, to optimize the electrochemical performance. The structure; morphology; and thermal, optical, and surface properties have been studied using a variety of techniques. The X-ray diffraction results confirmed the successful incorporation of samarium into ceria as a crystalline structure and inclusion of carbonate, which is amorphous in nature. To analyze the conduction mechanism, direct current conductivity was measured in a H2/O2 atmosphere. Doped ceria-binary carbonate ((Li/Na)CO3-SDC) showed the best conductivity of 0.31 S cm-1 and power density of 617 mW cm-2, at 600 °C. The enhancement in the ionic conductivity and performance of the composites is due to the contribution of hybrid ions (O2-, H+). The crystallite size of the composites was in the range 21-41 nm. For the calculation of band gaps, optical absorption spectra of the synthesized powders were analyzed, and they showed a red shift with the band gap energy in the range 2.6-3.01 eV, when compared to that of pure ceria (3.20 eV).

  • 9. An, J.
    et al.
    Yang, X.
    Wang, W.
    Li, J.
    Wang, H.
    Yu, Z.
    Gong, C.
    Wang, X.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
    Stable and efficient PbS colloidal quantum dot solar cells incorporating low-temperature processed carbon paste counter electrodes2017In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 158, p. 28-33Article in journal (Refereed)
    Abstract [en]

    Colloidal quantum dot (CQD) solar cells with a ZnO/PbS-TBAI/PbS-EDT/carbon structure were prepared using a solution processing technique. A commercially available carbon paste that was processed at low-temperatures was used as a counter electrode in place of expensive noble metals, such as Au or Ag, which are used in traditional PbS CQD solar cells. These CQD solar cells exhibited remarkable photovoltaic performance with a short circuit density (Jsc) of 25.6 mA/cm2, an open circuit voltage (Voc) of 0.45 V, a fill factor (FF) of 51.8% and a power conversion efficiency (PCE) as high as 5.9%. A reference device with an Au counter electrode had a PCE of 6.0%. The PCE of the carbon-containing CQD solar cell remained stable for 180 days when tested in ambient atmosphere, while the PCE of the Au-containing CQD solar cell lost 48.3% of its original value. Electrochemical impedance spectroscopy (EIS) demonstrated that holes within the PbS CQD were effectively transported to the carbon counter electrode.

  • 10.
    Andersson, Richard L.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Mallon, Peter E.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope2014In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 4, p. 6335-Article in journal (Refereed)
    Abstract [en]

    A missing cornerstone in the development of tough micro/nano fibre systems is an understanding of the fibre failure mechanisms, which stems from the limitation in observing the fracture of objects with dimensions one hundredth of the width of a hair strand. Tensile testing in the electron microscope is herein adopted to reveal the fracture behaviour of a novel type of toughened electrospun poly(methyl methacrylate)/poly(ethylene oxide) fibre mats for biomedical applications. These fibres showed a toughness more than two orders of magnitude greater than that of pristine PMMA fibres. The in-situ microscopy revealed that the toughness were not only dependent on the initial molecular alignment after spinning, but also on the polymer formulation that could promote further molecular orientation during the formation of micro/nano-necking. The true fibre strength was greater than 150 MPa, which was considerably higher than that of the unmodified PMMA (17 MPa). This necking phenomenon was prohibited by high aspect ratio cellulose nanocrystal fillers in the ultra-tough fibres, leading to a decrease in toughness by more than one order of magnitude. The reported necking mechanism may have broad implications also within more traditional melt-spinning research.

  • 11.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Malmström, Maria E.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Determining sorption coefficients in intact rock using an electrical potential gradient as a driving force for migration2006In: Scientific Basis for Nuclear Waste Management XXIX / [ed] VanIseghem, P, WARRENDALE, PA: MATERIALS RESEARCH SOCIETY , 2006, Vol. 932, p. 975-982Conference paper (Refereed)
    Abstract [en]

    The transport of radionuclides in indigenous rock is greatly affected by the sorption of cations in the porous rock matrix. For the determination of sorption coefficients, batch experiments have traditionally been used. For these experiments, the rock sample is crushed into fine particles to reduce the experimental time. However, this procedure increases the specific surface area of the sample and the new surfaces created could have different sorption qualities than the naturally occurring surfaces, which may impair the results of sorption coefficient determinations. A new method for determining sorption coefficients in intact rock is being developed, using electromigration as a means to speed up the transport process, thereby allowing for faster equilibration between the rock sample and the tracer solution. Here, we report results from preliminary experiments, using cesium as a sorbing tracer, showing a consistent difference between sorption coefficients obtained using electromigration methods on intact rock samples and traditional batch experiments on crushed samples.

  • 12.
    Andrén, Oliver C. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Lundberg, Pontus
    Hawker, Craig J.
    Nyström, Andreas M.
    Malkoch, Michael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Therapeutic Nanocarriers via Cholesterol Directed Self-Assembly of Well-Defined Linear-Dendritic Polymeric Amphiphiles2017In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 29, no 9, p. 3891-3898Article in journal (Refereed)
    Abstract [en]

    A novel platform of fluorescently labeled nanocarriers (NCs) is herein proposed based on amphiphilic linear-dendritic polymeric hybrids. These sophisticated polymers were synthesized with a high degree of structural control at a macro-molecular level, displayed hydrophobic cholesterol compartments as chain-terminus groups of the dendritic block and hydrophilic bifunctional linear poly(ethylene glycol) (PEG) block. Spherical supramolecular assemblies with therapeutically relevant properties were successfully achieved including (i) sizes in the region of 100 to 200 nm; (ii) narrow dispersity profile with values close to 0.12; and (iii) self-assembly down to nanomolar concentrations. The modular nature of the NCs permitted the encapsulation of single or dual anticancer drugs and in parallel provide intracellular fluorescent traceability. As polymer therapeutics, the NCs were proven to penetrate the cancerous cell membranes and deliver the cargo of drugs into the nuclei as well as the cytoplasm and mitochondria. The dual drug delivery of both doxorubicin (DOX) and triptolide substantially enhanced the therapeutic efficacy with a 63% significant increase against resistant breast cancer cells when compared to free DOX.

  • 13. Araujo, Rafael B.
    et al.
    Islam, M. S.
    Chakraborty, Sudip
    Ahuja, Rajeev
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Predicting electrochemical properties and ionic diffusion in Na2+2xMn2-x(SO4)(3): crafting a promising high voltage cathode material2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 2, p. 451-457Article in journal (Refereed)
    Abstract [en]

    Sodium ion batteries have emerged as a good alternative to lithium based systems due to their low cost of production. In this scenario, the search for higher voltage, sodium cathodes results in a new promising alluaudite structure Na2+2xMn2-x(SO4)(3). The structural, electronic and Na diffusion properties along with defects have been reported in this investigation within the framework of density functional theory. A band gap of 3.61 eV has been computed and the average deintercalation potential is determined to be 4.11 V vs. Na/Na+. A low concentration of anti-site defects is predicted due to their high formation energy. The biggest issue for the ionic diffusion in the Na2+2xMn2-x(SO4)(3) crystal structure is revealed to be the effect of Mn vacancies increasing the activation energy of Na+ ions that hop along the [001] equilibrium positions. This effect leads to activation energies of almost the same high values for the ionic hop through the [010] direction characterizing a 2D like ionic diffusion mechanism in this system.

  • 14.
    Ashour, Radwa
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering. Nuclear Materials Authority, P.O. Box 530, 11381 El Maadi, Cairo, Egypt.
    Samouhos, Michail
    Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCentre.
    Polido Legaria, Elizabeth
    Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCentre.
    Svärd, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Högblom, Joakim
    AkzoNobel, Pulp and Performance Chemicals AB.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Palmlöf, Magnus
    Kessler, Vadim G.
    Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCentre.
    Seisenbaeva, Gulaim A.
    Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCentre.
    Rasmuson, Åke C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    DTPA-Functionalized Silica Nano- and Microparticles for Adsorption and Chromatographic Separation of Rare Earth Elements2018In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 6, no 5, p. 6889-6900Article in journal (Refereed)
    Abstract [en]

    Silica nanoparticles and porous microparticles have been successfully functionalized with a monolayer of DTPA-derived ligands. The ligand grafting is chemically robust and does not appreciably influence the morphology or the structure of the material. The produced particles exhibit quick kinetics and high capacity for REE adsorption. The feasibility of using the DTPA-functionalized microparticles for chromatographic separation of rare earth elements has been investigated for different sample concentrations, elution modes, eluent concentrations, eluent flow rates, and column temperatures. Good separation of the La(III), Ce(III), Pr(III), Nd(III), and Dy(III) ions was achieved using HNO3 as eluent using a linear concentration gradient from 0 to 0.15 M over 55 min. The long-term performance of the functionalized column has been verified, with very little deterioration recorded over more than 50 experiments. The results of this study demonstrate the potential for using DTPA-functionalized silica particles in a chromatographic process for separating these valuable elements from waste sources, as an environmentally preferable alternative to standard solvent-intensive processes.

  • 15. Aydin, M.
    et al.
    Unal, B.
    Esat, B.
    Baykal, A.
    Karaoglu, E.
    Toprak, Muhammet Sadaka
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Sozeri, H.
    Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe(3)O(4) nanocomposite2012In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 514, p. 45-53Article in journal (Refereed)
    Abstract [en]

    Poly(2-thiophen-3-yl-malonic acid)/Fe(3)O(4) nanocomposite was synthesized by the precipitation of Fe(3)O(4) in the presence of poly(2-thiophen-3-yl-malonic acid) (PT3MA). Characterizations of the nanocomposite were performed by XRD, FT-IR, TEM, TGA, AC/DC conductivity and dielectric measurements. The capping of PT3MA around Fe(3)O(4) nanoparticles was confirmed by FTIR spectroscopy, the interaction being between bridging oxygen of the carboxylate and the nanoparticle surface through bidentate binding. The crystallite particle sizes of 6 +/- 3 nm and 7 +/- 3 nm were obtained from XRD line profile fitting and from TEM image analysis respectively, and they are in good agreement with each other. Magnetization measurements revealed that PT3MA coated magnetite particles do not saturate at higher fields. The material showed superparamagnetic character as revealed by the absence of coercivity and remnant magnetization. Magnetic particle size was calculated as 7.3 +/- 1.0 nm from the mean magnetization term in the Langevin function which is also in conformity with the values determined from TEM micrographs and XRD line profile fitting. The TEM particle size analysis of the nanoparticles revealed the presence of a slightly modified magnetically dead nanoparticle surface. AC and DC conductivity measurements were performed to elucidate the electrical conduction characteristics of the product.

  • 16. Babonas, G. J.
    et al.
    Reza, A.
    Simkiene, I.
    Sabataityte, J.
    Baran, M.
    Szymczak, R.
    Karlsson, Ulf O.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
    Suchodolski, Arturas
    KTH, School of Information and Communication Technology (ICT), Material Physics, Material Physics, MF.
    Optical properties of Fe-doped silica films on Si2006In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 252, no 15, p. 5391-5394Article in journal (Refereed)
    Abstract [en]

    Optical properties of Fe-doped silica films on Si were investigated by ellipsometric technique in the region 1-5 eV. Samples were produced by sol-gel method. Precursors were prepared by mixing tetraethoxysilane (TEOS) solution in ethanol and water with aqueous solution of Fe-chloride or Fe-acetate. The coating solution was deposited on Si substrates by spin on technique. The size of Fe-containing nanometric-sized particles depended on technology and varied from 20 to 100 nm. Optical response of complex hybrid samples SiO2:Fe/Si was interpreted in a multi-layer model. In the inverse problem, the Maxwell equations were solved by transfer matrix technique. Dielectric function of Fe-doped silica layers was calculated in the model of effective media. Analysis of optical data has shown that various Fe-oxides formed. Experimental data for films obtained from precursors with Fe-acetate and annealed in hydrogen were well described by the model calculations taking into account a small contribution 1-5% of metal Fe imbedded in silica. The Fe/Fe-O contribution to optical response increased for samples grown from FeCl3-precursor. Ellipsometric data for Fe-doped silica films on Si were interpreted taking into account the structural AFM studies as well as the results of magnetic measurements.

  • 17.
    Badal Tejedor, Maria
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. RISE.
    Interfacial and material aspects of powders with relevance to pharmaceutical tableting performance2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Tablets are the most common forms of drug administration. They are convenient to administer and easy to manufacture. However, problems associated with the adhesion of the powders to the tableting tools are common. This phenomenon is known as sticking and even though it has been well documented and studied, it remains poorly understood. The many factors that contribute to good performance of the powders make the sticking problem difficult to solve.

    The goal of this study is to establish a relationship between the properties measured at the nanoscale to the overall tablet mechanical properties, tablet performance and powder pre-processing induced modifications. By using atomic force microscopy (AFM) we aim to develop an analytical method to characterize the mechanical and adhesive properties of the pharmaceutical powders at the nanoscale. Other methodologies such as scanning electron microscopy (SEM), thermal analyses (DSC, TGA) and tablet strength test were also used. The materials used in this study are commonly used excipients, a sticky drug and magnesium stearate (MgSt). Two different approaches offered by AFM were employed: sharp tip imaging and colloidal probe force measurements. Nano-mechanical properties of the materials were evaluated with a sharp tip cantilever showing that higher adhesion correlates with higher tablet cohesion and that both are significantly affected by the presence of MgSt. AFM characterization of the particle surface mechanical properties at the nanoscale was also used to detect the crystallinity and amorphicity levels of the materials. New approaches to presenting such data considering the particle heterogeneity and to track the dynamics of surface recrystallization are revealed. Adhesive interactions between a steel sphere and sticky and non-sticky powders were performed with the colloidal probe technique. Sticky materials presented a higher adhesion against the steel surface, and reveal the mechanism of stickiness.

    This work thus contributes to the provision of predictability of the performance of formulations at an early stage of the development process.

  • 18.
    Badal Tejedor, Maria
    et al.
    KTH.
    Nordgren, Niklas
    Schuleit, Michael
    Millqvist-Fureby, Anna
    Rutland, Mark W.
    AFM colloidal probe measurements implicate capillary condensation in punch-particle surface interactions during tabletingArticle in journal (Refereed)
  • 19. Banerjee, Amitava
    et al.
    Araujo, Rafael B.
    Ahuja, Rajeev
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala University, Sweden.
    Unveiling the thermodynamic and kinetic properties of NaxFe(SO4)(2) (x=0-2): toward a high-capacity and low-cost cathode material2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 46, p. 17960-17969Article in journal (Refereed)
    Abstract [en]

    The mineral eldfellite, NaFe(SO4)(2), was recently proposed as an inexpensive candidate for the next generation of cathode application in Na-based batteries. Employing the density functional theory framework, we have investigated the phase stability, electrochemical properties and ionic diffusion of this eldfellite cathode material. We showed that the crystal structure undergoes a volume shrinkage of approximate to 8% upon full removal of Na ions with no imaginary frequencies at the Gamma point of phonon dispersion. This evokes the stability of the host structure. According to this result, we proposed structural changes to get higher specific energy by inserting two Na ions per redox-active metal. Our calculations indicate NaV(SO4)(2) as the best candidate with the capability of reversibly inserting two Na ions per redox center and producing an excellent specific energy. The main bottleneck for the application of eldfellite as a cathode is the high activation energies for the Na+ ion hop, which can reach values even higher than 1 eV for the charged state. This effect produces a low ionic insertion rate.

  • 20.
    Baryshnikov, Gleb V.
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. Bohdan Khmelnytsky National University, Ukraine.
    Gawrys, Pawel
    Ivaniuk, Khrystyna
    Witulski, Bernhard
    Whitby, Richard J.
    Al-Muhammad, Ayham
    Minaev, Boris
    Cherpak, Vladyslav
    Stakhira, Pavlo
    Volyniuk, Dmytro
    Wiosna-Salyga, Gabriela
    Luszczynska, Beata
    Lazauskas, Algirdas
    Tamulevicius, Sigitas
    Grazulevicius, Juozas V.
    Nine-ring angular fused biscarbazoloanthracene displaying a solid state based excimer emission suitable for OLED application2016In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 4, no 24, p. 5795-5805Article in journal (Refereed)
    Abstract [en]

    A new biscarbazoloanthracene consisting of nine fused aromatic rings, including two pyrrole units, has been obtained in a straightforward and convergent synthesis. Computational chemistry and conformational analysis revealed that the semiconductor's molecule is not planar, the two carbazole moieties being helical twisted from the plane of the anthracene unit. Photophysical and electrochemical measurements showed that this angular fused heteroacene has a low lying HOMO energy level with a wide band gap despite its extended pi-conjugated molecular framework. Based on its relatively low-lying HOMO level, the semiconductor promises a high environmental stability in comparison to other related linear fused acenes and heteroacenes. The biscarbazoloanthracene has been applied as the light emitting layer in a white light emitting diode (WOLED). It is proposed that the white OLED feature is due to dual light emission properties from the active semiconductor layer being based on both the molecular luminescence of the small molecule and a discrete excimer emission made possible by suitable aggregates in the solid state. Noteworthy, this is the first reported example of such a behavior observed in a small molecule heteroacene rather than an oligomer or a polymer.

  • 21. Baykal, A.
    et al.
    Durmus, Z.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Sozeri, H.
    Synthesis and characterization of PEG-Sr hexaferrite by sol-gel conversion2012In: Journal of Superconductivity and Novel Magnetism, ISSN 1557-1939, Vol. 25, no 6, p. 2003-2008Article in journal (Refereed)
    Abstract [en]

    Sr-M-type hexagonal ferrites have been prepared via a sol-gel route, and the effects of addition of different molecular weight polyethylene glycol (PEG) into the sol solutions on the static magnetic properties and particle morphology have been studied. Crystalline phases of the samples were determined by XRD analysis. FT-IR and TG analyses were used to prove the presence of PEG on SrFe12O19. The results showed that adding PEG with different molecular weight into the sol solutions affected the formation mechanism of SrFe12O19. Sr-M precursors prepared by various PEG types show different magnetic behaviors after precalcination at 150 degrees C. This discrepancy is explained by the formation of a different phase during the synthesis of SrM particles.

  • 22. Baykal, A.
    et al.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Durmus, Z.
    Sozeri, H.
    Hydrothermal synthesis of SrFe 12O 19 and its characterization2012In: Journal of Superconductivity and Novel Magnetism, ISSN 1557-1939, Vol. 25, no 6, p. 2081-2085Article in journal (Refereed)
    Abstract [en]

    We have synthesized strontium hexaferrite particles in an alkaline medium using a hydrothermal process at 180°C. Crystalline phase of samples were determined by XRD and spectroscopic, morphological, and magnetic investigation of the sample were FT-IR, SEM, and TG analysis, respectively. XRD analysis revealed few impurity phases in the as-made powder; upon calcinations, the material is converted to desired hexaferrite phase. As synthesized powder exhibits agglomerates with rather smooth facets, in the form of thick platelets. Upon calcination, all these structures were observed to transfer to rod-like structures. The As calcined sample has high specific saturation magnetization (Ms ) values of 65 emu/g that is close to its theoretical value of 74.3 emu/g but the hydrothermally synthesized sample does not. This is in agreement with the observations from XRD analysis where few impurity phases observed in the as-made powder cause a weak magnetic response. Upon calcination, the material is converted to a desired hexaferrite phase with better magnetic properties.

  • 23.
    Belonoshko, A. B.
    et al.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Rosengren, Anders
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Ab Initio Study of Water Interaction with a Cu Surface2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 21, p. 16267-16270Article in journal (Refereed)
    Abstract [en]

    We have performed a first principles investigation of water interaction with a Cu surface. The calculated surface energy of a Cu(100) slab is in reasonable agreement with experimental data. The energy of water dissociation is in agreement with experiment. The results of the ab initio calculations are compared to experimental data on hydrogen partial pressure. It is concluded that Cu(OH)(ads) is formed due to a reaction between Cu and anoxic water. The energy of the Cu(100) slab with OH and H adsorbed is lower than the energy of the same slab with an adsorbed water molecule.

  • 24. Bexell, U.
    et al.
    Olsson, M.
    Sundell, P. E.
    Johansson, Mats K. G.
    KTH, Superseded Departments, Fibre and Polymer Technology.
    Carlsson, P.
    Hellsing, A.
    A ToF-SIMS study of linseed oil bonded to mercapto silane treated aluminium2004In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 231-2, p. 362-365Article in journal (Refereed)
    Abstract [en]

    ToF-SIMS has been used to analyse an aluminium surface treated with a vegetable oil using a mercapto silane as a coupling agent between the aluminium substrate and the vegetable oil. The coupling between the vegetable oil and the mercapto silane was obtained through a photoinduced thiol-ene reaction using UV-radiation. The ToF-SIMS results show that the desired thiolene reaction has taken place between the unsaturated parts of the vegetable oil and the thiol groups of the mercapto silane via the thiol-ene reaction forming a surface film.

  • 25.
    Blomberg, Eva
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Lundin, Maria
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Nuclear Chemistry.
    Layer-by-Layer Assembly of Biomacromolecules2011In: Encyclopedia of Surface and Colloid Science, SecondEdition / [ed] P. Somasundaran, London: Taylor & Francis, 2011, 1, p. 1-14Chapter in book (Refereed)
    Abstract [en]

    The ability to construct thin films with controlled thickness on almost any type of surface is of great interestin many research fields. For biomedical applications, thin films on medical devices have been found toimprove the biocompatibility, reduce the immunological response, and deliver medical drugs locally. Thelayer structure is closely related to the function and efficiency of such films. During the last decades, it hasbeen shown that the layer-by-layer (LbL) assembly of charged macromolecules has created an inexpensiveroute to the formation of thin multilayer films, and the interest in using biomacromolecules (e.g., polysaccharidesand proteins) has emerged in recent years. The LbL technique offers unique opportunities forcontrolling the physical properties of thin surface layers, such as film thickness, chemical and elasticproperties, and stability. In this entry, we will focus on recent advances in the multilayer film area usingbiomacromolecules. We will discuss how different physicochemical properties of biomacromolecules andof the deposition solution affect the formation and structure of LbL-assembled multilayer. Finally, we willaddress some suggested applications for these biopolymer film coatings.

  • 26. Bolten, J.
    et al.
    Hellström, Per-Erik
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Ternon, C.
    Serre, P.
    Fabrication of Nanowires2014In: Beyond CMOS Nanodevices 1, Wiley Blackwell , 2014, p. 5-23Chapter in book (Other academic)
    Abstract [en]

    Several fabrication processes of silicon nanowires have been developed in the research community. They can be divided into bottom-up or top-down approaches. This chapter describes top-down fabrication of silicon nanowires using electron beam lithography (EBL), which combined with optical lithography can be a viable approach if not too many silicon nanowires need to be patterned on a wafer. It also describes the sidewall transfer lithography (STL) technique using I-line stepper lithography to pattern a vast amount of silicon nanowires on a silicon wafer. In addition the chapter examines how bottom-up Si nanowires synthesized by vapor-liquid-solid (VLS)-chemical vapor deposition (CVD) can be assembled at low cost in an efficient way for further use as a sensing material. Among the solution-based assembly methods for the nanostructured network (nanonet) fabrication, the vacuum filtration method is highly simple, versatile, low cost and scalable to large areas.

  • 27. Brodin, H
    et al.
    Eskner, Mats
    KTH, Superseded Departments, Materials Science and Engineering.
    The influence of oxidation on mechanical and fracture behaviour of an air plasma-sprayed NiCoCrAlY bondcoat2004In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 187, no 1, p. 113-121Article in journal (Refereed)
    Abstract [en]

    The influence of isothermal oxidation on room-temperature mechanical and fracture behaviour of an air plasma-sprayed Ni-23Co-17Cr12Al-0.5Y bondcoat was investigated by the miniaturised disc bending test (MDBT) technique. Disc specimens were extracted from the bondcoat region of both as-received and oxidised thermal barrier coating (1000 degreesC, 1000 h). Microstructure analysis revealed that the nonoxidised bondcoat consisted mainly of gamma-phase (Ni-structure) and beta-NiAl. After 500 h of oxidation no NiAl remained in the bondcoat, an effect due to internal as well as external oxidation of Al. The former resulted in the formation of an extensive oxide network and the latter in the formation of an oxide scale between the topcoat and the bondcoat. The crack propagation behaviour of the bondcoat, both in non-oxidised and oxidised condition can be characterised as intergranular with stable growth. The crack propagation resistance is substantial due to the lamellar gain (splat) orientation and the extensive intergranular oxide network, acting as crack deflection and crack branching mechanisms. As an effect of oxidation, crack propagation resistance of the bondcoat increases but the strain to crack initiation decreases.

  • 28. Budarin, Vitaliy L
    et al.
    Clark, James H
    Henschen, Jonatan
    Farmer, Thomas J
    Macquarrie, Duncan J
    Mascal, Mark
    Nagaraja, Gundibasappa K
    Petchey, Tabitha H M
    Processed Lignin as a Byproduct of the Generation of 5-(Chloromethyl)furfural from Biomass: A Promising New Mesoporous Material.2015In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 8, no 24, p. 4172-9Article in journal (Refereed)
    Abstract [en]

    The lignin by-product of the conversion of lignocellulosic biomass to 5-(chloromethyl)furfural (CMF) has been characterised by thermogravimetric analysis, N2 physisorption porosimetry, attenuated internal reflectance IR spectroscopy, elemental analysis and solid-state NMR spectroscopy. The lignin (LCMF) has a moderate level of mesoporosity before thermal treatment and a surface area of 63 m(2)  g(-1) , which increases dramatically on pyrolysis at temperatures above 400 °C. An assessment of the functionality and textural properties of the material was achieved by analysing LCMF treated thermally over a range of pyrolysis temperatures. Samples were sulfonated to test their potential as heterogeneous acid catalysts in the esterification of levulinic acid. It was shown that unpyrolysed catalysts gave the highest ester yields of up to 93 %. To the best of our knowledge, this is the first example of mesoporous lignin with an appreciable surface area that is produced directly from a bio-refinery process and with further textural modification of the material demonstrated.

  • 29.
    Burks, Terrance
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Akthar, F.
    Saleemi, M.
    Avila, M.
    Kiros, Yohannes
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    ZnO-PLLA Nanofiber Nanocomposite for Continuous Flow Mode Purification of Water from Cr(VI)2015In: Journal of Environmental and Public health, ISSN 1687-9805, E-ISSN 1687-9813, Vol. 2015, article id 687094Article in journal (Refereed)
    Abstract [en]

    Nanomaterials of ZnO-PLLA nanofibers have been used for the adsorption of Cr(VI) as a prime step for the purification of water.The fabrication and application of the flexible ZnO-PLLA nanofiber nanocomposite as functional materials in this well-developedarchitecture have been achieved by growing ZnO nanorod arrays by chemical bath deposition on synthesized electrospun poly-Llactidenanofibers. The nanocomposite material has been tested for the removal and regeneration of Cr(IV) in aqueous solutionunder a “continuous flow mode” by studying the effects of pH, contact time, and desorption steps.Theadsorption of Cr(VI) speciesin solution was greatly dependent upon pH. SEM micrographs confirmed the successful fabrication of the ZnO-PLLA nanofibernanocomposite.Theadsorption and desorption of Cr(VI) species were more likely due to the electrostatic interaction between ZnOand Cr(VI) ions as a function of pH.The adsorption and desorption experiments utilizing the ZnO-PLLAnanofiber nanocompositehave appeared to be an effective nanocomposite in the removal and regeneration of Cr(VI) species.

  • 30.
    Carosio, Federico
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Cuttica, Fabio
    Medina, Lilian
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Clay nanopaper as multifunctional brick and mortar fire protection coating: Wood case study2016In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 93, p. 357-363Article in journal (Refereed)
    Abstract [en]

    Abstract Wood is one of the most sustainable, esthetically pleasing and environmentally benign engineering materials, and is often used in structures found in buildings. Unfortunately, the fire hazards related to wood are limiting its application. The use of transparent cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure, is proposed as a sustainable and efficient fire protection coating for wood. Fire performance was assessed by cone calorimetry. When exposed to the typical 35 kW/m2 heat flux of developing fires, the time to ignition of coated wood samples increased up to about 4 1/2 min, while the maximum average rate of heat emission (MARHE) was decreased by 46% thus significantly reducing the potential fire threat from wood structures.

  • 31. Chang, J. -Q
    et al.
    Zhong, Y.
    Hu, C. -H
    Ji, Zong-Wei
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Institute of Metal Research, Chinese Academy of Sciences, China.
    Li, Y. -F
    Zhong, L. -S
    Luo, J. -L
    Preparation and high photocatalytic performance of spherical BiOCl photocatalyst2018In: 9th China Functional Materials Technology and Industry Forum, 9th CEMTIF 2017, Trans Tech Publications Inc., 2018, Vol. 914, p. 168-174Conference paper (Refereed)
    Abstract [en]

    The smooth spherical BiOCl photocatalyst was synthesized successfully by a facile solvothermal method and further characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer and UV-Vis diffuse reflectance spectra techniques. The photocatalytic activity of as-prepared photoctalyst was evaluated by the degradation of Rhodamine B (RhB) under visible light irradiation (λ>420 nm). The results showed that the BiOCl with smooth spherical morphology exhibits an excellent photocatalytic activity and stability. RhB was thoroughly degraded after 60 min of visible light irradiation.

  • 32. Chen, Bin
    et al.
    Yu, Gang
    Li, Xin
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Ding, Yubin
    Wang, Cheng
    Liu, Zhiwei
    Xie, Yongshu
    Full-colour luminescent compounds based on anthracene and 2,2 '-dipyridylamine2013In: Journal of Materials Chemistry C, ISSN 2050-7526, Vol. 1, no 44, p. 7409-7417Article in journal (Refereed)
    Abstract [en]

    Starting from two simple units of anthracene and 2,2'-dipyridylamine, a series of new luminescent compounds 1-8 were designed and synthesized by a combined strategy of changing the connection mode between the two units, extending the conjugation size, and introducing an additional electron donor. Photophysical properties of 1-8 were investigated and discussed on the basis of solvatochromic behaviour, theoretical calculations, crystal structure, and optimized structures. Interestingly, the emission wavelengths of these compounds could be successfully tuned from violet to red both in solutions and the solid-state, and prominent positive solvatochromism was observed for the compounds with a D-p-A framework. Consider compound 7 as an example, it shows peaks at 526 nm and 627 nm in cyclohexane and DMSO, respectively. Meanwhile, the quantum yield was decreased from 0.80 in cyclohexane to 0.12 in DMSO. The introduction of bulky groups was demonstrated to be effective for suppressing the aggregation effect and thus improving the solid state emission quantum yield. These results indicate that the combined structure modulation strategy offers a powerful tool for tuning the emission behaviour. To demonstrate the possibility of practical applications, 2 was employed as the emitting material for the fabrication of deep-blue organic light-emitting diodes (OLEDs), which showed a maximum external quantum efficiency of 2.2%. The CIE coordinates of (0.15, 0.08) are indicative of excellent blue color purity.

  • 33. Chen, H.
    et al.
    Gao, Y.
    Lu, Z.
    Ye, L.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP. State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
    Copper Oxide Film In-situ Electrodeposited from Cu(II) Complex as Highly Efficient Catalyst for Water Oxidation2017In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 230, p. 501-507Article in journal (Refereed)
    Abstract [en]

    Water splitting is deemed as an effective pathway for producing ideal clean energy, such as hydrogen. Here, a copper oxide film (Cu-Tris film) was prepared in-situ from a 0.2 M phosphate buffer solution (pH = 12.0) containing 1.0 mM Cu2+ and 2.0 mM Tris via controlled-potential electrodeposition. The Cu-Tris film showed a significantly low overpotential of 390 mV at a current density of 1.0 mA/cm2 for electrocatalytic water oxidation. Simultaneously, a considerably low Tafel slope of 41 mV/decade was achieved. This Cu-Tris film also exhibited a high and stable current density of ca. 7.5 mA/cm2 at 1.15 V vs. NHE for long-term electrocatalysis (10 h). These results demonstrated the superior performance of the developed Cu-Tris film, which should be attributed to the regulating effect of the five coordinated planar structure of the Cu-Tris complex precursor during the process of electrodeposition.

  • 34. Chen, Si
    et al.
    Nyholm, Leif
    Jokilaakso, Nima
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Karlström, Amelie Eriksson
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Material Physics.
    Smith, Ulf
    Zhang, Shi-Li
    Current Instability for Silicon Nanowire Field-Effect Sensors Operating in Electrolyte with Platinum Gate Electrodes2011In: Electrochemical and solid-state letters, ISSN 1099-0062, E-ISSN 1944-8775, Vol. 14, no 7, p. J34-J37Article in journal (Refereed)
    Abstract [en]

    Current instability is observed for silicon nanowire field-effect transistors operating in electrolytes with Pt gate electrodes. A comparative study involving an Ag/AgCl-reference gate electrode reveals that the effect results from a drift in the potential at the Pt-electrode/electrolyte interface. In a phosphate buffer saline of pH 7.4, the stabilization of the potential of the Pt electrode was found to require approximately 1000 s. A concurrent potential drift, with a comparable time constant, occurring at the electrolyte/oxidized-nanowire interface rendered a complex device current response which complicated the interpretation of the results.

  • 35.
    Chen, Song
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Wang, Shihuai
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - Ångström, Fysikalisk kemi.
    Li, Hu
    Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap..
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Eu3+ doped monetite and its use as fluorescent agent for dental restorations2018In: Ceramics International, ISSN 0272-8842, E-ISSN 1873-3956, Vol. 44, no 9, p. 10510-10516Article in journal (Refereed)
    Abstract [en]

    It is essential but challenging to distinguish the dental restorations from the surrounding teeth when removing filling materials from cavity. In this study, Eu3+ doped monetite was proposed as a fluorescent agent for dental restorations to meet this challenge. Eu3+ doped monetite with enhanced fluorescent property was obtained via a precipitation method. The presence of Eu3+ could prevent the phase transformation of brushite to monetite. However, all the brushite particles transformed to monetite at 300 °C and to tricalcium phosphate at 800 °C. The emission intensity increased with the addition of Eu3+ and reached the maximum when 12 mol% Eu3+ was added into the aqueous solution. With either 254 nm or 393 nm excitation, Eu3+ doped monetite showed the strongest fluorescence emission peaking at 616 nm and other two moderate bands peaking at 699 nm and 593 nm. The excitation spectra at the emission wavelength of 616 nm showed strong absorption peaks at 254 nm and 393 nm. We further investigate the fluorescence properties of Eu3+ doped monetite in one type of dental restorations. Glass ionomer cement with Eu3+ doped monetite exhibited clear fluoresce with origin color under UV irradiation at 254 nm, showing that Eu3+doped monetite is a promising fluorescent agent for dental restorations.

  • 36.
    Chen, Zhuo Yuan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    The role of particles on initial atmospheric corrosion of copper and zinc: lateral distribution, secondary spreading and CO2-/SO2-influence2005Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    The role of sodium chloride (NaCl) particles and ammonium sulfate ((NH4)2SO4) particles on the initial atmospheric corrosion of copper and zinc was investigated under in situ and ex situ conditions using microgravimetry, FTIR spectroscopy, ion chromatography, scanning electron microscopy with x-ray microanalysis and the scanning Kelvin probe. For the first time, in situ infrared spectra were collected on a micron level during particle induced atmospheric corrosion using a recently developed experimental set-up for in situ FTIR microspectroscopy. Lateral distribution of corrosion and reaction products on copper and zinc surfaces was determined and could be connected with the mechanisms of the initial particle induced corrosion. The recently discovered secondary spreading effect from NaCl electrolyte droplets on metal surfaces was studied under in situ conditions and the effect of CO2 on the spreading process was elaborated. The ambient level of CO2 (350 ppm, 1 ppm = 10-6 volume parts) results in a relatively low secondary spreading effect, whereas the lower level of CO2 (<5 ppm) causes a much faster secondary spreading effect over a large area. At low CO2 concentration alkaline conditions will prevail in the cathodic area, leading to large changes in the surface tension at the oxide/electrolyte interface in the peripherical parts of the droplet. This induces a surface tension driven convective flow of electrolyte from the NaCl droplet. The continuous growth of the secondary spreading area at low CO2 concentration is possible due to the galvanic coupling with the droplet leading to transport of sodium ions to this region and maintenance of the alkaline conditions. At 350 ppm CO2, carbonate formation in the secondary spreading area results in lowering of the pH, increasing the surface tension of the oxide/electrolyte interface and inhibiting the secondary spreading. CO2 strongly affects the NaCl-induced atmospheric corrosion rate of copper. The overall influence of CO2 and NaCl depends on at least three identified mechanisms. At low NaCl particle density, CO2 affects the secondary spreading effect from the electrolyte droplet. This leads to a larger effective cathodic area at low CO2 concentration and a higher corrosion rate. The more alkaline surface electrolyte present at low CO2 concentration also affects the formation of corrosion products and the amount of soluble copper chloride. Whereas the presence of larger amounts of soluble chloride tends to increase the corrosion rate, the formation of CuO results in a more protective surface film which decreases the corrosion rate. This effect was observed at higher NaCl particle densities, where the secondary spreading areas overlapped with adjacent NaCl particle clusters. The formation of CuO leads to lower corrosion rates compared to ambient CO2 concentration in which this phase was not formed. For zinc, the formation of a more protective corrosion product layer was not observed and the corrosion rate is generally higher for low than for ambient CO2 concentration. The presence of NaCl particles on the metal surfaces strongly affects the SO2 interaction with the metal surfaces. The oxidation of S(IV) turned out to be fast at the area of the NaCl-containing electrolyte droplet, both for copper and zinc. On copper surfaces, both sulphate (SO4 2-) and dithionate (S2O6 2-) ions formed which is consistent with a copper catalysed reaction route for sulfite oxidation including the formation of a Cu(II)–sulfito complex as an important step. For zinc, a surface mediated sulfite oxidation process leads to rapid formation of sulphate in the electrolyte droplet area. The presence of SO2 strongly inhibits the secondary spreading due to the decrease in pH induced by absorption of SO2 in the cathodic areas. The presence of gaseous oxidants, such as NO2 and O3, has previously been considered as an important prerequisite for the oxidation of sulfite on copper. The results obtained here suggest that the formation of local electrochemical cells induced by deposited NaCl particles could be another important route for S(IV)- oxidation to sulfate formation. On copper, SO2 was also found to promote the formation of less soluble copper chlorides, such as paratacamite (Cu2(OH)3Cl) and nantokite (CuCl). The electrolyte droplet was dried after 24 hours of exposure due to the formation of less soluble paratacamite (Cu2(OH)3Cl) and nantokite (CuCl) and led to a decrease in the corrosion rate. Thus, SO2 alone promotes the corrosion rate of copper, whereas in the presence of NaCl particles the corrosion rate of copper may slow down due to the formation of insoluble copper chloride compounds. The lateral distribution of corrosion products after exposure of NaCl contaminated copper and zinc surfaces to humid air with gaseous pollutants is a result of the formation of local electrochemical cells at the particles and concomitant differences in chemical composition and pH. For (NH4)2SO4 deposited copper and zinc surfaces the corrosion effects increase with the amount of pre-deposited particles and with the exposure time. On copper, the size of the particles affects the corrosion rate, smaller particles resulting in a higher corrosion rate than larger particles at equal amount of deposition. The formation of Cu2O was the dominant corrosion product after exposure longer than 10 days. (NH4)2SO4 particles result in enhanced Cu2O formation on copper due to a reaction sequence involving catalysis by NH3. The corrosion of copper by (NH4)2SO4 particles was much larger than that induced by NaCl particles. However, for zinc, the (NH4)2SO4 particles lead to smaller corrosion effects than those of NaCl particles. For both particles, significant corrosion attack was observed at relative humidity (RH) lower than the deliquescence point of the salts.

  • 37.
    Chen, Zhuo Yuan
    et al.
    Swedish Corrosion Institute.
    Persson, D.
    Swedish Corrosion Institute.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    In situ studies of the effect of SO2 on the initial NaCl-induced atmospheric corrosion of copper2005In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 152, no 12, p. B526-B533Article in journal (Refereed)
    Abstract [en]

    The initial SO2-induced atmospheric corrosion of copper deposited with NaCl has been examined with Fourier transform infrared microspectroscopy under in situ and ex situ conditions in order to reveal the spatial distribution of reaction products. The oxidation of S(IV) turns out to be fast at the area of the NaCl-containing electrolyte droplet, and both sulfate (SO42-) and dithionate (S2O62-) ions form. A copper-catalyzed reaction route for the sulfite oxidation has been suggested, which includes the formation of a Cu(II)-sulfito complex as an important step. The presence of gaseous oxidants such as NO2 and O-3 has previously been considered as an important prerequisite for the oxidation of sulfite on copper. The results obtained here suggest that the formation of local electrochemical cells induced by deposited NaCl particles could be another important route for S(IV) oxidation to sulfate formation. SO2 was found to promote the formation of less soluble paratacamite [Cu-2(OH)(3)Cl] and nantokite (CuCl), which may slow down the atmospheric corrosion rate of copper.

  • 38.
    Chen, Zhuo Yuan
    et al.
    Swedish Corrosion Institute.
    Persson, D.
    Swedish Corrosion Institute.
    Nazarov, A.
    Swedish Corrosion Institute.
    Zakipour, S.
    Swedish Corrosion Institute.
    Thierry, D.
    Swedish Corrosion Institute.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    In situ studies of the effect of CO2 on the initial NaCl-induced atmospheric corrosion of copper2005In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 152, no 9, p. B342-B351Article in journal (Refereed)
    Abstract [en]

    The effect of carbon dioxide (CO2) on the NaCl-induced atmospheric corrosion of copper was studied using in situ Fourier transform infrared microspectroscopy, in situ scanning Kelvin probe, and scanning electron microscopy/energy-dispersive analysis by X-ray. The copper surface was contaminated with a single NaCl particle and then exposed to 80 +/- 2% relative humidity clean humidified air with two concentrations of CO2 (< 5 and 350 ppm). After formation of an electrolyte droplet secondary spreading of electrolyte from the peripherical parts of the droplet was observed. The secondary spreading effect, which was much larger at < 5 ppm CO2 than at 350 ppm, was a consequence of the formation of a galvanic element between a local cathode outside the edge of the droplet and an anode in the droplet. This lead to alkaline conditions in the secondary spreading area and transport of Na+ ions to the local cathode. The large secondary spreading at low CO2 concentration was possible due to lowering of the surface tension of the electrolyte/metal oxide interface at the peripheral parts of the droplet. Carbonate formation lowered the pH when the CO2 concentration was 350 ppm and resulted in a decrease of the pH and inhibition of the secondary spreading.

  • 39.
    Chen, Zhuo Yuan
    et al.
    Swedish Corrosion Institute.
    Persson, D.
    Swedish Corrosion Institute.
    Samie, F.
    Swedish Corrosion Institute.
    Zakipour, S.
    Swedish Corrosion Institute.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    Effect of carbon dioxide on sodium chloride-induced atmospheric corrosion of copper2005In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 152, no 12, p. B502-B511Article in journal (Refereed)
    Abstract [en]

    The effect of carbon dioxide (CO2) on sodium chloride (NaCl) induced atmospheric corrosion of copper was studied in laboratory exposures using microgravimetry, ion chromatography, Fourier transform infrared spectroscopy, and scanning electron microscopy with X-ray microanalysis. With lower amount of NaCl particles on the copper surface (< 15 mu g/cm(2)), the corrosion rate was higher with < 1 ppm CO2 than with 350 ppm CO2, and for higher amount of NaCl (> 15 mu g/cm(2)), the corrosion was higher with 350 ppm CO2. With lower amount of NaCl and low CO2 concentration, a secondary spreading of electrolyte occurred from the droplets that formed at the particle clusters. This led to a larger effective cathodic area and a higher corrosion rate. However, at higher surface concentration of NaCl a spatial interaction effect between the local corrosion sites counteracted the increase in the corrosion rate due to overlap of the cathodic areas from the particles. Another factor, which influenced the corrosion process, was the effect of CO2 on the pH of the surface electrolyte. Higher pH (< 1 ppm CO2 concentration) increased the formation of CuO, which improved the corrosion resistance of the corrosion product layer but hindered the formation of insoluble CuCl, whereby more soluble chloride ions were available for triggering localized corrosion and accelerating the initial atmospheric corrosion of copper. Hence, the overall influence of CO2 and NaCl depends on at least three identified mechanisms.

  • 40. Chen, Zhuo Yuan
    et al.
    Persson, Dan
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    Initial NaCl- Particle Induced Atmospheric Corrosion of Zinc-Effect of CO2 and SO22008In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 50, no 1, p. 111-123Article in journal (Refereed)
    Abstract [en]

    Initial corrosion and secondary spreading effects during NaCl particle induced corrosion on zinc was explored using in situ and ex situ FTIR microspectroscopy, optical microscopy, and SEM/EDAX. The secondary spreading effect which occurs upon introduction of humid air on NaCl deposited zinc surfaces was strongly dependent on the CO2 and SO2 content of the introduced air. Ambient level of CO2 (350 ppm) resulted in a relatively low spreading effect, whereas the lower level of CO2 (<5 ppm) caused a much faster spreading over a larger area. In the presence of SO2, the secondary spreading effect was absent which could limit the cathodic process in this case. At <5 ppm CO2, the corrosion is more localized, with the formation of simonkolleite (Zn5(OH)8Cl2 · H2O), zincite (ZnO) and sodium carbonate (Na2CO3), and a larger effective cathodic area. At 350 ppm CO2, the corrosion is more general and formation of simonkolleite, hydrozincite (Zn5(OH)6(CO3)2) and sodium carbonate was observed. Sodium carbonate was mainly formed in more alkaline areas, in the inner edge of the electrolyte droplet and in the secondary spreading area. Oxidation of sulphur and concomitant sulphate formation was enhanced in the presence of NaCl particles, due to the formation of a droplet, the separation of the anodic and cathodic areas and the accompanying differences in chemical composition and pH in the surface electrolyte.

  • 41.
    Chen, Zhuo Yuan
    et al.
    Swedish Corrosion Institute.
    Tidblad, J.
    Swedish Corrosion Institute.
    Persson, D.
    Swedish Corrosion Institute.
    Zakipour, S.
    Swedish Corrosion Institute.
    Kucera, V.
    Swedish Corrosion Institute.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science.
    The Effect of Ammonium Sulfate Particles on the Atmospheric Corrosion of CopperManuscript (preprint) (Other academic)
  • 42.
    Chen, Zhuo Yuan
    et al.
    KTH, Superseded Departments, Materials Science and Engineering.
    Zakipour, S.
    Persson, D.
    Leygraf, Christofer
    KTH, Superseded Departments, Materials Science and Engineering.
    The Effect of Sodium Chloride Particles on the Atmospheric Corrosion of Pure Copper2004In: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 60, no 5, p. 479-491Article in journal (Refereed)
    Abstract [en]

    The atmospheric corrosion of copper has been investigated after deposition of sodium chloride (NaCl) particles and 10 days of subsequent exposure to clean, humidified air below, near, and above the point of deliquescence of NaCl (at around 75% relative humidity (RH), Microgravimetry, Fourier transform infrared (FTIR) microspectroscopy, scanning electron microscopy with x-ray microanalysis, and scanning Kelvin probe were used to identify corrosion processes and products. The NaCl deposition resulted in the evenly distributed NaCl particle clusters with a diameter of approximately 100 μm. The clusters consisted of individual NaCl particles of <10 μm. The mass gain increased linearly with the amount of NaCl particles added in the range of this study (up to 4 μg/cm2). Even at very low RH (55%), which lies far below the point of deliquescence (75%), copper with NaCl particles added suffered from significant corrosion attack and the mass gain of copper with 4 μg/cm2 NaCl added was about 7 μg/cm2 after 10 days of exposure. At 55% RH, the NaCl particles did not dissolve. However, significant chloride-induced corrosion effects were observed after 10 days, both in the original particle cluster and in a 20-μm-wide outer zone into which chloride ions had dffused radially. At 75% RH, the NaCl particles dissolved and chloride ions diffused to cover the whole surface. Chloride-accelerated corrosion effects resulted in the formation of cuprite (Cu2O) and copper carbonate, mainly in the area of the original particle cluster. The corrosion effects accelerated further at 95% PH, resulting in the formation of Cu2O over the whole surface and copper carbonate in a concentric zone outside the original particle cluster. The distribution of the corrosion products was related to the localization of the anodic and cathodic reactions during the corrosion process.

  • 43.
    Chen, Zhuo Yuan
    et al.
    wedish Corrosion Institute, Sweden.
    Zakipur, S.
    Persson, D.
    Leygraf, Christofer
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Corrosion Science (closed 20081231).
    The Combined Effects of Gaseous pollutants and Sodium Chloride Particles on the Atmospheric Corrosion of Pure Copper2005In: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 61, no 11, p. 1022-1034Article in journal (Refereed)
    Abstract [en]

    The atmospheric corrosion of pure copper has been investigated after the deposition of sodium chloride (NaCI) particles and exposure to humid air containing gaseous pollutants. Microgravimetry, Fourier transform infrared (FTIR) micro-spectroscopy, and scanning electron microscopy with x-ray microanalysis were used for the investigation of corrosion processes and products. The effect of NaCl particles on the mass gain was much higher than that of gaseous pollutants. With deposition of NaCl particles on the copper surfaces, the corrosion rate increased significantly, with severe corrosion attack mainly localized to the NaCl particle clusters. A similar corrosion rate was found, however, after exposure to pure humid air and to humid air containing gaseous pollutants, sulfur dioxide (SO2), ozone (O-3), nitrogen dioxide (NO2), and SO2 + NO2. The corrosion rate was not dependent on the concentration of the pollutants. However, this was not the case for the combination of SO2 and O-3, leading to a significantly higher corrosion rate at higher concentrations. Exposure of copper samples with NaCl particles deposited resulted in unevenly distributed corrosion product clusters, with a distribution of corrosion products that could be associated with the locations of the particle clusters. Around the particle clusters, the corrosion resulted in areas with different amounts of corrosion products. After 10 days of exposure to humid air containing 100 ppb SO2 and 100 ppb NO2 + SO2, cuprite (Cu2O), paratacamite (Cu-2[OH](3)Cl), carbonate (CO32-), and sulfate (SO42-) were observed mainly in the area of the original particle cluster, with some sutfate and copper hydroxysulfate also in the areas outside. After 10 days of exposure to humid air containing 100 ppb O-3 + SO2, cuprite (Cu2O), hydroxychloride (maybe paratacamite, Cu-2[OH](3)Cl), carbonate (CO32-), and sutfate (SO42-) were observed in the area of the original particle cluster. A circular zone containing brochantite (Cu-4[OH](6)SO4) was formed around and outside of the original particle cluster, and the formation of this phase was promoted by the presence of NaCl particles on the surface. The location of anodic and cathodic reactions during the corrosion process leads to the distribution of different corrosion products on the surface.

  • 44.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Aitola, Kerttu
    Chen, Cheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Zhang, Fuguo
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sveinbjornsson, Kari
    Hua, Yong
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Boschloo, Gerrit
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Dalian Univ Technol.
    Acceptor Donor Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells2016In: NANO ENERGY, ISSN 2211-2855, Vol. 30, p. 387-397Article in journal (Refereed)
    Abstract [en]

    Perovskite solar cells (PSCs) have attracted significant interest and hole transporting materials (HTMs) play important roles in achieving high efficiency. Here, we report additive free ionic type HTMs that are based on 2-ethylhexyloxy substituted benzodithiophene (BDT) core unit. With the ionization of end-capping pyridine units, the hole mobility and conductivity of molecular materials are greatly improved. Applied in PSCs, ionic molecular material M7-TFSI exhibits the highest efficiency of 17.4% in the absence of additives [lithium bis(trifluor-omethanesulfonyl)imide and 4-tert-butylpyridine]. The high efficiency is attributed to a deep highest occupied molecular orbital (HOMO) energy level, high hole mobility and high conductivity of M7-TFSI. Moreover, due to the higher hydrophobicity of M7-TFSI, the corresponding PSCs showed better stability than that of Spiro-OMeTAD based ones. In addition, the strong absorption and suitable energy levels of materials (M6, M7-13r and M7-TFSI) also qualify them as donor materials in organic solar cells (OSCs) and the devices containing M7-TFSI as donor material displayed an efficiency of 6.9%.

  • 45.
    Chiu, Justin NingWei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, Viktoria
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Setterwall, Fredrik
    A Review of Thermal Energy Storage Systems with Salt Hydrate Phase Change Materials for Comfort Cooling2009In: 11th International Conference on Thermal Energy Storage, June 14-17 , 2009, Stockholm, Sweden., 2009Conference paper (Refereed)
    Abstract [en]

    This paper presents a review of cold thermal energy storage technologies. Latent heat thermal energy storage (LHTES) with phase change materials (PCMs) deserves attention as they provide high energy density and small temperature change interval upon melting/solidifying. Salt hydrates are especially interesting since they demonstrate high latent heat of fusion, high thermal conductivity, low flammability, and facilitate the use in buildings as compared to organic PCMs. A review of system performance obtained from experimental work, theoretical analyses and real case studies has however shown some material shortcomings. To reach cost effectiveness, future work in the field of LHTES with salt hydrates lies in finding suitable methods for limiting incongruent melting and subcooling without compromising the storage density. Also, system integration of LHTES in cold applications can be further developed in terms of innovative design for high power and storage capacity, load optimized sizing, controls, and elimination of PCM encapsulation.

  • 46. Christensen, M
    et al.
    Iversen, BB
    Bertini, L
    Gatti, C
    Toprak, Muhammet S.
    KTH, Superseded Departments, Materials Science and Engineering.
    Muhammed, Mamoun
    KTH, Superseded Departments, Materials Science and Engineering.
    Nishibori, E
    Structural study of Fe doped and Ni substituted thermoelectric skutterudites by combined synchrotron and neutron powder diffraction and ab initio theory2004In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 96, no 6, p. 3148-3157Article in journal (Refereed)
    Abstract [en]

    We present neutron and synchrotron powder-diffraction investigations as well as ab initio calculations to elucidate delicate structural features in doped skutterudites. Samples with assumed Fe doping were investigated (FeyCo4Sb12, y=0.4, 0.8, 1.0, and 1.6), as well as samples with formal Ni substitution (Co4-xNixSb12, x=0, 0.4, 0.8, and 1.2). The present study serves as a case story for the determination of fine structural details of thermoelectric skutterudites by diffraction methods in combination with ab initio calculations. We illustrate the problem of fluorescence in the conventional x-ray powder diffraction on the Fe-doped samples by a comparison with the neutron powder-diffraction data. On the series of the Ni-substituted samples, the neutron powder-diffraction data were collected to investigate the exact sitting of the Ni. The sample with the highest Ni substitution (Co2.8Ni1.2Sb12) was also used for high resolution, high-energy synchrotron powder diffraction measurements. These revealed that the sample consists of two skutterudite phases. A complete description of the Ni-substituted samples was obtained in tandem with ab initio calculations, which show that the system contains a Ni-rich (Co0.38Ni3.62Sb12) and a Ni-poor (Co3.76Ni0.24Sb12)) skutterudite phases.

  • 47.
    Chulapakorn, T.
    et al.
    Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden..
    Sychugov, Ilya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Ottosson, M.
    Uppsala Univ, Dept Chem, Angstrom Lab, Inorgan Chem, POB 538, SE-75121 Uppsala, Sweden..
    Primetzhofer, D.
    Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden..
    Moro, M. V.
    Uppsala Univ, Dept Phys & Astron, POB 516, SE-75120 Uppsala, Sweden..
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Hallén, Anders
    KTH, School of Information and Communication Technology (ICT).
    Luminescence of silicon nanoparticles from oxygen implanted silicon2018In: Materials Science in Semiconductor Processing, ISSN 1369-8001, E-ISSN 1873-4081, Vol. 86, p. 18-22Article in journal (Refereed)
    Abstract [en]

    Oxygen with a kinetic energy of 20 keV is implanted in a silicon wafer (100) at different fluences, followed by post-implantation thermal annealing (PIA) performed at temperatures ranging from 1000 to 1200 degrees C, in order to form luminescent silicon nanoparticles (SiNPs) and also to reduce the damage induced by the implantation. As a result of this procedure, a surface SiOx layer (with 0 < x < 2) with embedded crystalline Si nanoparticles has been created. The samples yield similar luminescence in terms of peak wavelength, lifetime, and absorption as recorded from SiNPs obtained by the more conventional method of implanting silicon into silicon dioxide. The oxygen implantation profile is characterized by elastic recoil detection (ERD) technique to obtain the excess concentration of Si in a presumed SiO2 environment. The physical structure of the implanted Si wafer is examined by grazing incidence X-ray diffraction (GIXRD). Photoluminescence (PL) techniques, including PL spectroscopy, time-resolved PL (TRPL), and photoluminescence excitation (PLE) spectroscopy are carried out in order to identify the PL origin. The results show that luminescent SiNPs are formed in a Si sample implanted by oxygen with a fluence of 2 x 10(17) atoms cm(-2) and PIA at 1000 degrees C. These SiNPs have a broad size range of 6-24 nm, as evaluated from the GIXRD result. Samples implanted at a lower fluence and/or annealed at higher temperature show only weak defect-related PL. With further optimization of the SiNP luminescence, the method may offer a simple route for integration of luminescent Si in mainstream semiconductor fabrication.

  • 48.
    Cong, Jiayan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Kinschel, Dominik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. Dyenamo AB, Sweden.
    Daniel, Quentin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Gabrielsson, E.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Svensson, Per H.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. SP Process Development Forskargatan, Sweden.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Dalian University of Technology (DUT), China.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Bis(1,1-bis(2-pyridyl)ethane)copper(i/II) as an efficient redox couple for liquid dye-sensitized solar cells2016In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, no 38, p. 14550-14554Article in journal (Refereed)
    Abstract [en]

    A new redox couple, [Cu(bpye)2]+/2+, has been synthesized, and applied in dye-sensitized solar cells (DSSCs). Overall efficiencies of 9.0% at 1 sun and 9.9% at 0.5 sun were obtained, which are considerably higher than those obtained for cells containing the reference redox couple, [Co(bpy)3]2+/3+. These results represent a record for copper-based complex redox systems in liquid DSSCs. Fast dye regeneration, sluggish recombination loss processes, faster electron self-exchange reactions and suitable redox potentials are the main reasons for the observed increase in efficiency. In particular, the main disadvantage of cobalt complex-based redox couples, charge-transport problems, appears to be resolved by a change to copper complex redox couples. The results make copper complex-based redox couples very promising for further development of highly efficient DSSCs.

  • 49.
    Crawford, James
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Epistemic and aleatory uncertainty in recommended, generic rock K-d values used in performance assessment studies2006In: Scientific Basis for Nuclear Waste Management XXIX, WARRENDALE, PA: MATERIALS RESEARCH SOCIETY , 2006, Vol. 932, p. 251-258Conference paper (Refereed)
    Abstract [en]

    Over the past decade or so there has been an explosion in the number of sorption modelling approaches and applications of sorption modelling for understanding and predicting solute transport in natural systems. The most widely used and simplest of all models, however, is that employing a constant distribution coefficient (K-d) relating the sorbed concentration of a solute on a mineral surface and its aqueous concentration. There are a number of reasons why a constant partitioning coefficient is attractive to environmental modellers for predicting radionuclide retardation, and in spite of all the shortcomings and pitfalls associated with such an approach, it remains the leitmotif of most performance assessment transport modelling. This paper examines the scientific basis underpinning the K-d-approach and its broad defensibility in a performance assessment framework. It also examines sources of epistemic and aleatory uncertainty that undermine confidence in K-d-values reported in the open literature. The paper focuses particularly upon the use of so-called "generic" data for generalised rock types that may not necessarily capture the full material property characteristics of site-specific materials. From the examination of recent literature data, it appears that there are still a number of outstanding issues concerning interpretation of experimental laboratory data that need to be considered in greater detail before concluding that the recommended values used in performance assessments are indeed conservative.

  • 50.
    Csontos, Botond
    KTH, School of Chemical Science and Engineering (CHE).
    Development of a method to measure “soft particles” in the fuel2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    As environmental awareness raises the expectations to reduce emission of modern diesel engines are growing as well. Fuel diversity and the advanced injector systems requires even more attention on an ever existing problem which is called nozzle hole fouling. Recent literature and observations at Scania indicate the phenomena is connected to fuel filter plugging caused by metal carboxyl contaminants through the formation of “soft particles”.

    This report begins with a literature review about the nature of agglomerates in biodiesel. Followed by the evaluation of six particle sizing equipment. This include one ensemble technique based on Brownian motion, namely dynamic light scattering. The remaining five techniques are single particle counters, including a high speed camera system, light blocking system, Nano tracking analysis and two different approaches using light microscope. To characterise the structure and chemical components of the particles SEM, EDX, FT-IR and ICP-OES were used.

    From the above mentioned methods optical microscopy was chosen to be the best method to evaluate the particle distribution. The main reasons for this is the ability to measure particles in the solution in the desired size range and the possibility to couple it with a Raman spectrometer, providing possibilities for future studies.

    Besides finding the best technique to measure the particles, a secondary result is the negation of Zinc-neodecanoate creating particles in the fuel. It opposes the assumption made in the literature about filter blocking, and it finds the need for deeper understanding of the nature of soft particles.

123456 1 - 50 of 288
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf