kth.sePublications
Change search
Refine search result
123456 1 - 50 of 269
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abbak, Ramazan A.
    et al.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Ellmann, Artu
    Ustun, Aydin
    A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey2012In: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 56, no 4, p. 909-927Article in journal (Refereed)
    Abstract [en]

    In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 '' x 3 '' resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes' formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of +/- 6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to he more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of +/- 8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.

  • 2.
    Abdollahzadeh, Makan
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Najafi-Alamdari, Mehdi
    Geodesy, KNToosi Uni. Tech..
    Application of Molodensky's Method for Precise Determination of Geoid in Iran2011In: Journal of Geodetic Science, ISSN 2081-9919, E-ISSN 2081-9943, Vol. 1, no 3, p. 259-270Article in journal (Refereed)
    Abstract [en]

    Determination of the geoid with a high accuracy is a challenging task among geodesists. Its precise determination is usually carried out by combining a global geopotential model with terrestrial gravity anomalies measured in the region of interest along with some topographic information. In this paper, Molodensky's approach is used for precise determination of height anomaly. To do this, optimum combination of global geopotential models with the validated terrestrial surface gravity anomalies and some deterministic modification schemes are investigated. Special attention is paid on the strict modelling of the geoidal height and height anomaly difference. The accuracy of the determined geoid is tested on the 513 points of Iranian height network the geoidal height of which are determined by the GPS observations.

  • 3. Abrehdary, M.
    et al.
    Sjoberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Sampietro, D.
    Contribution of satellite altimetry in modelling Moho density contrast in oceanic areas2019In: Journal of Applied Geodesy, ISSN 1862-9016, E-ISSN 1862-9024, Vol. 13, no 1, p. 33-40Article in journal (Refereed)
    Abstract [en]

    The determination of the oceanic Moho (or crust-mantle) density contrast derived from seismic acquisitions suffers from severe lack of data in large parts of the oceans, where have not yet been sufficiently covered by such data. In order to overcome this limitation, gravitational field models obtained by means of satellite altimetry missions can be proficiently exploited, as they provide global uniform information with a sufficient accuracy and resolution for such a task. In this article, we estimate a new Moho density contrast model named MDC2018, using the marine gravity field from satellite altimetry in combination with a seismic-based crustal model and Earth's topographic/bathymetric data. The solution is based on the theory leading to Vening Meinesz-Moritz's isostatic model. The study results in a high-accuracy Moho density contrast model with a resolution of 1° × 1° in oceanic areas. The numerical investigations show that the estimated density contrast ranges from 14.2 to 599.7 kg/m 3 with a global average of 293 kg/m 3 . In order to evaluate the accuracy of the MDC2018 model, the result was compared with some published global models, revealing that our altimetric model is able to image rather reliable information in most of the oceanic areas. However, the differences between this model and the published results are most notable along the coastal and polar zones, which are most likely due to that the quality and coverage of the satellite altimetry data are worsened in these regions.

  • 4. Abrehdary, M.
    et al.
    Sjöberg, Lars
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    A New Moho Depth Model for Fennoscandia with Special Correction for the Glacial Isostatic Effect2021In: Pure and Applied Geophysics, ISSN 0033-4553, E-ISSN 1420-9136, Vol. 178, no 3, p. 877-888Article in journal (Refereed)
    Abstract [en]

    In this study, we present a new Moho depth model in Fennoscandia and its surroundings. The model is tailored from data sets of XGM2019e gravitationl field, Earth2014 topography and seismic crustal model CRUST1.0 using the Vening Meinesz-Moritz model based on isostatic theory to a resolution of 1° × 1°. To that end, the refined Bouguer gravity disturbance is determined by reducing the observed field for gravity effect of topography, density heterogeneities related to bathymetry, ice, sediments, and other crustal components. Moreover, stripping of non-isostatic effects of gravity signals from mass anomalies below the crust due to crustal thickening/thinning, thermal expansion of the mantle, Delayed Glacial Isostatic Adjustment (DGIA), i.e., the effect of future GIA, and plate flexure has also been performed. As Fennoscandia is a key area for GIA research, we particularly investigate the DGIA effect on the gravity disturbance and gravimetric Moho depth determination in this area. One may ask whether the DGIA effect is sufficiently well removed in the application of the general non-isostatic effects in such an area, and to answer this question, the Moho depth is determined both with and without specific removal of the DGIA effect prior to non-isostatic effect and Moho depth determinations. The numerical results yield that the RMS difference of the Moho depth from our model HVMD19 vs. the seismic CRUST19 and GRAD09 models are 3.8/4.2 km and 3.7/4.0 km when the above strategy for removing the DGIA effect is/is not applied, respectively, and the mean value differences are 1.2/1.4 km and 0.98/1.4 km, respectively. Hence, our study shows that the specific correction for the DGIA effect on gravity disturbance is slightly significant, resulting in individual changes in the gravimetric Moho depth up to − 1.3 km towards the seismic results. On the other hand, our study shows large discrepancies between gravimetric and seismic Moho models along the Norwegian coastline, which might be due to uncompensated non-isostatic effects caused by tectonic motions.

  • 5.
    Abrehdary, M.
    et al.
    Univ West HV, Div Math Comp & Surveying Engn, SE-46186 Trollhättan, Sweden..
    Sjöberg, Lars
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ West HV, Div Math Comp & Surveying Engn, SE-46186 Trollhättan, Sweden.;Royal Inst Technol KTH, Div Geodesy & Satellite Positioning, SE-10044 Stockholm, Sweden..
    Moho density contrast in Antarctica determined by satellite gravity and seismic models2021In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 225, no 3, p. 1952-1962Article in journal (Refereed)
    Abstract [en]

    As recovering the crust-mantle/Moho density contrast (MDC) significantly depends on the properties of the Earth's crust and upper mantle, varying from place to place, it is an oversimplification to define a constant standard value for it. It is especially challenging in Antarctica, where almost all the bedrock is covered with a thick layer of ice, and seismic data cannot provide a sufficient spatial resolution for geological and geophysical applications. As an alternative, we determine the MDC in Antarctica and its surrounding seas with a resolution of 1 degrees x 1 degrees by the Vening Meinesz-Moritz gravimetric-isostatic technique using the XGM2019e Earth Gravitational Model and Earth2014 topographic/bathymetric information along with CRUST1.0 and CRUST19 seismic crustal models. The numerical results show that our model, named HVMDC20, varies from 81 kg m(-3) in the Pacific Antarctic mid-oceanic ridge to 579 kg m(-3) in the Gamburtsev Mountain Range in the central continent with a general average of 403 kg m(-3). To assess our computations, we compare our estimates with those of some other gravimetric as well as seismic models (KTH11, GEMMA12C, KTH15C and CRUST1.0), illustrating that our estimates agree fairly well with KTH15C and CRUST1.0 but rather poor with the other models. In addition, we compare the geological signatures with HVMDC20, showing how the main geological structures contribute to the MDC. Finally, we study the remaining glacial isostatic adjustment effect on gravity to figure out how much it affects the MDC recovery, yielding a correlation of the optimum spectral window (7 <= n <= 12) between XGM2019e and W12a GIA models of the order of similar to 0.6 contributing within a negligible +/- 14 kg m(-3) to the MDC.

  • 6.
    Abrehdary, M.
    et al.
    Uppsala Univ UU, Dept Earth Sci, Div Geophys, SE-75236 Uppsala, Sweden..
    Sjöberg, Lars
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Uppsala Univ UU, Dept Earth Sci, Div Geophys, SE-75236 Uppsala, Sweden..
    Remaining non-isostatic effects in isostatic-gravimetric Moho determination-is it needed?2023In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 234, no 3, p. 2066-2074Article in journal (Refereed)
    Abstract [en]

    For long time the study of the Moho discontinuity (or Moho) has been a crucial topic in inferring the dynamics of the Earth's interior, and with profitable result it is mapped by seismic data, but due to the heterogeneous distribution of such data the quality varies over the world. Nevertheless, with the advent of satellite gravity missions, it is today possible to recover the Moho constituents (i.e. Moho depth; MD and Moho density contrast; MDC) via gravity observations based on isostatic models. Prior to using gravity observations for this application it must be stripped due to the gravitational contributions of known anomalous crustal density structures, mainly density variations of oceans, glacial ice sheets and sediment basins (i.e. stripping gravity corrections). In addition, the gravity signals related mainly with masses below the crust must also be removed. The main purpose of this study is to estimate the significance of removing also remaining non-isostatic effects (RNIEs) on gravity, that is, gravity effects that remain after the stripping corrections. This is carried out by using CRUST19 seismic crustal model and employing Vening Meinesz-Moritz (VMM) gravimetric-isostatic model in recovering the Moho constituents on a global scale to a resolution of 1 degrees x 1 degrees. To reach this goal, we present a new model, named MHUU22, formed by the SGGUGM2 gravitational field, Earth2014 topography, CRUST1.0 and CRUST19 seismic crustal models. Particularly, this study has its main emphasis on the RNIEs on gravity and Moho constituents to find out if we can modify the stripping gravity corrections by a specific correction of the RNIEs. The numerical results illustrate that the RMS differences between MHUU22 MD and the seismic model CRUST1.0 and least-squares combined model MOHV21 are reduced by 33 and 41 per cent by applying the NIEs, and the RMS differences between MHUU22 MDC and the seismic model CRUST1.0 and least-squares combined model MDC21 are reduced by 41 and 23 per cent when the above strategy for removing the RNIEs is applied. Hence, our study demonstrates that the specific correction for the RNIEs on gravity disturbance is significant, resulting in remarkable improvements in MHUU22, which more clearly visualize several crustal structures.

  • 7.
    Abrehdary, Majid
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Satellite Positioning.
    The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination2016In: Geophysical Journal International, ISSN 0956-540X, E-ISSN 1365-246X, Vol. 204, no 1, p. 262-273Article in journal (Refereed)
    Abstract [en]

    In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1 degrees x 1 degrees blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.

  • 8. Aikio, A. T.
    et al.
    Mursula, K.
    Buchert, S.
    Forme, F.
    Amm, O.
    Marklund, Göran T.
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory.
    Dunlop, M.
    Fontaine, D.
    Vaivads, A.
    Fazakerley, A.
    Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments2004In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 22, no 12, p. 4089-4101Article in journal (Refereed)
    Abstract [en]

    The four Cluster s/c passed over Northern Scandinavia on 6 February 2001 from south-east to north-west at a radial distance of about 4.4 R-E in the post-midnight sector. When mapped along geomagnetic field lines, the separation of the spacecraft in the ionosphere was confined to within 110 km in latitude and 50 km in longitude. This constellation allowed us to study the temporal evolution of plasma with a time scale of a few minutes. Ground-based instrumentation used involved two all-sky cameras, magnetometers and the EISCAT radar. The main findings were as follows. Two auroral arcs were located close to the equatorward and poleward edge of a large-scale density cavity, respectively. These arcs showed a different kind of a temporal evolution. (1) As a response to a pseudo-breakup onset, both the up- and downward field-aligned current (FAC) sheets associated with the equatorward arc widened and the total amount of FAC doubled in a time scale of 1-2 min. (2) In the poleward arc, a density cavity formed in the ionosphere in the return (downward) current region. As a result of ionospheric feedback, a strongly enhanced ionospheric southward electric field developed in the region of decreased Pedersen conductance. Furthermore, the acceleration potential of ionospheric electrons, carrying the return current, increased from 200 to 1000 eV in 70 s, and the return current region widened in order to supply a constant amount of return current to the arc current circuit. Evidence of local acceleration of the electron population by dispersive Alfven waves was obtained in the upward FAC region of the poleward arc. However, the downward accelerated suprathermal electrons must be further energised below Cluster in order to be able to produce the observed visible aurora. Both of the auroral arcs were associated with broad-band ULF/ELF (BBELF) waves, but they were highly localised in space and time. The most intense BBELF waves were confined typically to the return current regions adjacent to the visual arc, but in one case also to a weak upward FAC region. BBELF waves could appear/disappear between s/c crossings of the same arc separated by about 1 min.

  • 9. Alfsen, K. H.
    et al.
    Bonifazi, C.
    Pedersen, A.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Electric field and plasma observations near the magnetopause and bow shock during a rapid compression.1984In: Achievements of the International Magnetospheric Study (IMS), p. 99-104Article in journal (Refereed)
    Abstract [en]

    A fast compressional motion of the magnetopause resulting from the interaction of an interplanetary shock and the Earth's magnetosphere is discussed. The ISEE-1 and 2 satellites were in the frontside magnetosphere before the shock. A magnetosonic wave front, the magnetopause, and the bow shock passed them in a very short time. By a combination of electric and magnetic field data it is possible to determine the magnetosonic and the magnetopause velocity. -from STAR, 23(14), 1985

  • 10. ALFSEN, KH
    et al.
    BONIFAZI, C
    PEDERSEN, A
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    INTERACTION BETWEEN AN INTERPLANETARY SHOCK AND THE EARTHS MAGNETOSPHERE ON AUGUST 27, 1978 - ISEE-1 ELECTRIC-FIELD AND ISEE-2 PLASMA OBSERVATIONS1984In: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol. 89, no NA10, p. 8863-8871Article in journal (Refereed)
  • 11. Alm, L.
    et al.
    Farrugia, C. J.
    Paulson, K. W.
    Argall, M. R.
    Torbert, R. B.
    Burch, J. L.
    Ergun, R. E.
    Russell, C. T.
    Strangeway, R. J.
    Khotyaintsev, Y. V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Marklund, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Giles, B. L.
    Differing Properties of Two Ion-Scale Magnetopause Flux Ropes2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 114-131Article in journal (Refereed)
    Abstract [en]

    In this paper, we present results from the Magnetospheric Multiscale constellation encountering two ion-scale, magnetopause flux ropes. The two flux ropes exhibit very different properties and internal structure. In the first flux rope, there are large differences in the currents observed by different satellites, indicating variations occurring over sub-d(i) spatial scales, and time scales on the order of the ion gyroperiod. In addition, there is intense wave activity and particle energization. The interface between the two flux ropes exhibits oblique whistler wave activity. In contrast, the second flux rope is mostly quiescent, exhibiting little activity throughout the encounter. Changes in the magnetic topology and field line connectivity suggest that we are observing flux rope coalescence.

  • 12.
    Amin, Hadi
    et al.
    Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Faculty of Engineering and Sustainable Development, University of Gävle, 80176, Gävle, Sweden.
    A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters2019In: Journal of Geodesy, ISSN 0949-7714, E-ISSN 1432-1394, Vol. 93, no 10, p. 1943-1961Article in journal (Refereed)
    Abstract [en]

    The geoid, according to the classical Gauss-Listing definition, is, among infinite equipotential surfaces of the Earth's gravity field, the equipotential surface that in a least squares sense best fits the undisturbed mean sea level. This equipotential surface, except for its zero-degree harmonic, can be characterized using the Earth's global gravity models (GGM). Although, nowadays, satellite altimetry technique provides the absolute geoid height over oceans that can be used to calibrate the unknown zero-degree harmonic of the gravimetric geoid models, this technique cannot be utilized to estimate the geometric parameters of the mean Earth ellipsoid (MEE). The main objective of this study is to perform a joint estimation of W-0, which defines the zero datum of vertical coordinates, and the MEE parameters relying on a new approach and on the newest gravity field, mean sea surface and mean dynamic topography models. As our approach utilizes both satellite altimetry observations and a GGM model, we consider different aspects of the input data to evaluate the sensitivity of our estimations to the input data. Unlike previous studies, our results show that it is not sufficient to use only the satellite-component of a quasi-stationary GGM to estimate W-0. In addition, our results confirm a high sensitivity of the applied approach to the altimetry-based geoid heights, i.e., mean sea surface and mean dynamic topography models. Moreover, as W-0 should be considered a quasi-stationary parameter, we quantify the effect of time-dependent Earth's gravity field changes as well as the time-dependent sea level changes on the estimation of W-0. Our computations resulted in the geoid potential W-0 = 62636848.102 +/- 0.004 m(2) s(-2) and the semi-major and minor axes of the MEE, a = 6378137.678 +/- 0.0003 m and b = 6356752.964 +/- 0.0005 m, which are 0.678 and 0.650 m larger than those axes of GRS80 reference ellipsoid, respectively. Moreover, a new estimation for the geocentric gravitational constant was obtained as GM = (398600460.55 +/- 0.03) x 10(6) m(3) s(-2).

  • 13. Argall, M. R.
    et al.
    Paulson, K.
    Alm, L.
    Rager, A.
    Dorelli, J.
    Shuster, J.
    Wang, S.
    Torbert, R. B.
    Vaith, H.
    Dors, I.
    Chutter, M.
    Farrugia, C.
    Burch, J.
    Pollock, C.
    Giles, B.
    Gershman, D.
    Lavraud, B.
    Russell, C. T.
    Strangeway, R.
    Magnes, W.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Khotyaintsev, Yu. V.
    Ergun, R. E.
    Ahmadi, N.
    Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 146-162Article in journal (Refereed)
    Abstract [en]

    We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported approximate to 66eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500eV is also more persistent than at 66eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500eV, but only in close proximity to the EDR at 66eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90 degrees, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma. Plain Language Summary The process of reconnection involves an explosive transfer of magnetic energy into particle energy. When energetic particles contact modern technology such as satellites, cell phones, or other electronic devices, they can cause random errors and failures. Exactly how particles are energized via reconnection, however, is still unknown. Fortunately, the Magnetospheric Multiscale mission is finally able to detect and analyze reconnection processes. One recent finding is that energized particles take on a crescent-shaped configuration in the vicinity of reconnection and that this crescent shape is related to the energy conversion process. In our paper, we explain why the crescent shape has not been observed until now and inspect particle motions to determine what impact it has on energy conversion. When reconnection heats the plasma, the crescent shape forms from the cool, tenuous particles. As plasmas from different regions mix, dense, nonheated plasma obscures the crescent shape in our observations. The highest-energy particle population created by reconnection, though, also contains features of the crescent shape that are more persistent but appear less dramatically in the data.

  • 14.
    Arvidsson, Mimmi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering.
    Dahlin, T.
    Fernlund, Joanne
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    Geoelectrical imaging for aggregate quality investigations2008In: Near Surface 2008 - 14th European Meeting of Environmental and Engineering Geophysics, European Association of Geoscientists and Engineers, 2008Conference paper (Refereed)
    Abstract [en]

    In the aggregate industry the use of geophysical measuring is rare. The aim of this project is to investigate how geophysical instruments can be a tool in prospecting for rock quarries, and also how they can be a help in which direction they should expand in. To have control over the quality of the aggregates is important and therefore to know when the rock mass is changing is of interest for the production. Three quarries, with different properties, were investigated with different geophysical methods, of which only the result from the resistivity and IP measurement is presented here. The fracture frequency was measured as well for comparison. The depth to the bedrock is visible in the inverted resistivity sections for the three sites, and an estimation of the quantity of the till is possible to make from the 3D-inversions. It is also shown that the fracture frequency affects the resistivity of the bulk mass. The results also show that the resistivity imaging is well suited for detecting anomalies in the rock mass, which might affect the production. This is especially clear in one of the quarries where a dolerite dyke is clearly visible in the combined resistivity and IP results.

  • 15. Aunai, N.
    et al.
    Retino, A.
    Belmont, G.
    Smets, R.
    Lavraud, B.
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection2011In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 29, no 9, p. 1571-1579Article in journal (Refereed)
    Abstract [en]

    Cluster data is analyzed to test the proton pressure tensor variations as a proxy of the proton decoupling region in collisionless magnetic reconnection. The Hall electric potential well created in the proton decoupling region results in bounce trajectories of the protons which appears as a characteristic variation of one of the in-plane off-diagonal components of the proton pressure tensor in this region. The event studied in this paper is found to be consistent with classical Hall field signatures with a possible 20% guide field. Moreover, correlations between this pressure tensor component, magnetic field and bulk flow are proposed and validated, together with the expected counterstreaming proton distribution functions.

  • 16.
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Impact of compensating mass on the topographic mass-A study using isostatic and non-isostatic Earth crustal models2012In: Acta Geodaetica et Geophysica Hungarica, ISSN 1217-8977, E-ISSN 1587-1037, Vol. 47, no 1, p. 29-51Article in journal (Refereed)
    Abstract [en]

    The Earth topographic masses are compensated by an isostatic adjustment. According to the isostatic hypothesis a mountain is compensated by mass deficiency beneath it, where the crust is floating on the viscous mantle. For study of the impact of the compensating mass on the topographic mass a crustal thickness (Moho boundary) model is needed. A new gravimetric-isostatic model to estimate the Moho depth, Vening Meinesz-Moritz model, and two well-known Moho models (CRUST2.0 and Airy-Heiskanen) are used in this study. All topographic masses cannot be compensated by simple isostatic assumption then other compensation mechanism should be considered. In fact small topographic masses can be supported by elasticity of the larger masses and deeper Earth's layers. We discuss this issue applying spatial and spectral analyses in this study. Here we are going to investigate influence of the crustal thickness and its density in compensating the topographic potential. This study shows that the compensating potential is larger than the topographic potential in low-frequencies vs. in high-frequencies which are smaller. The study also illustrates that the Vening Meinesz-Moritz model compensates the topographic potential better than other models, which is more suitable for interpolation of the gravity field in comparison with two other models. In this study, two methods are presented to determine the percentage of the compensation of the topographic potential by the isostatic model. Numerical studies show that about 75% and 57% of the topographic potentials are compensated by the potential beneath it in Iran and Tibet. In addition, correlation analysis shows that there is linear relation between the topographic above the sea level and underlying topographic masses in the low-frequencies in the crustal models. Our investigation shows that about 580 +/- 7.4 metre (in average) of the topographic heights are not compensated by variable the crustal root and density.

  • 17.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning. Univ Gävle, Dept Comp & Spatial Sci, Gävle, Sweden..
    Amin, Hadi
    Univ Gävle, Dept Comp & Spatial Sci, Gävle, Sweden..
    Wang, Linsong
    China Univ Geosci, Inst Geophys & Geomatics, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan, Peoples R China.;GFZ German Res Ctr Geosci, Helmholtz Ctr Postdam, Telegrafenberg, Germany..
    Shirazian, Masoud
    Shahid Rajaee Teacher Training Univ, Civil Engn Fac, Dept Geomat Engn, Tehran, Iran..
    Mantle viscosity derived from geoid and different land uplift data in Greenland2022In: Journal of Geophysical Research - Solid Earth, ISSN 2169-9313, E-ISSN 2169-9356, Vol. 127, no 8, article id e2021JB023351Article in journal (Refereed)
    Abstract [en]

    The Earth's mass redistribution due to deglaciation and recent ice sheet melting causes changes in the Earth's gravity field and vertical land motion in Greenland. The changes are because of ongoing mass redistribution and related elastic (on a short time scale) and viscoelastic (on time scales of a few thousands of years) responses. These signatures can be used to determine the mantle viscosity. In this study, we infer the mantle viscosity associated with the glacial isostatic adjustment (GIA) and long-wavelength geoid beneath the Greenland lithosphere. The viscosity is determined based on a spatio-spectral analysis of the Earth's gravity field and the land uplift rate in order to find the GIA-related gravity field. We used different land uplift data, that is, the vertical land motions obtained by the Greenland Global Positioning System (GPS) Network (GNET), gravity recovery and climate experiment (GRACE) and glacial isostatic adjustment (GIA) data, and also combined them using the Kalman filtering technique. Using different land uplift rates, one can obtain different GIA-related gravity fields. As shown in this study, the mantle viscosities of 1.9 x 10(22) Pa s and 7.8 x 10(21) Pa s for a depth of 200-700 km are obtained using ICE-6G (VM5a) model and the combined land uplift model, respectively, and the GIA-related gravity potential signal.

  • 18.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Surveying – Geodesy, Land Law and Real Estate Planning.
    Shirazian, Masoud
    Department of Geomatics Engineering, Civil Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran.
    Amin, Hadi
    Faculty of Engineering and Sustainable Development, University of Gävle, Gävle, Sweden.
    Horemuz, Milan
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Surveying – Geodesy, Land Law and Real Estate Planning.
    Time transfer and significance of vertical land motion in relativistic geodesy applications: a review paper2023In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 11Article in journal (Refereed)
    Abstract [en]

    Determination of the Earth’s gravity field and geopotential value is one of the fundamental topics in physical geodesy. Traditional terrestrial gravity and precise leveling measurements can be used to determine the geopotential values at a local or regional scale. However, recent developments in optical atomic clocks have not only rapidly improved fundamental science but also contributed to applied research. The latest generation of optical clocks is approaching the accuracy level of 10−18 when facilitating atomic clock networks. These systems allow examining fundamental theories and many research applications, such as atomic clocks applications in relativistic geodesy, to precisely determine the Earth’s gravity field parameters (e.g., geopotential values). According to the theory of relativistic geodesy, the frequency difference measured by an optical clock network is related to the gravity potential anomaly, provided that the effects of disturbing signals (i.e., tidal and non-tidal contributions) are filtered out. The relativistic geodesy principle could be used for a practical realization of global geodetic infrastructure, most importantly, a vertical datum unification or realization of height systems. This paper aims to review the background of relativistic (clock-based) geodesy and study the variations of optical atomic clock measurements (e.g., due to hydrology loading and land motion).

  • 19.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Sjoberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.02011In: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 55, no 4, p. 641-666Article in journal (Refereed)
    Abstract [en]

    The MohoroviiA double dagger discontinuity is the boundary between the Earth's crust and mantle. Several isostatic hypotheses exist for estimating the crustal thickness and density variation of the Earth's crust from gravity anomalies. The goal of this article is to compare the Airy-Heiskanen and Vening Meinesz-Moritz (VMM) gravimetric models for determining Moho depth, with the seismic Moho (CRUST2.0 or SM) model. Numerical comparisons are performed globally as well as for some geophysically interesting areas, such as Fennoscandia, Persia, Tibet, Canada and Chile. These areas are most complicated areas in view of rough topography (Tibet, Persia and Peru and Chile), post-glacial rebound (Fennoscandia and Canada) and tectonic activities (Persia). The mean Moho depth provided by CRUST2.0 is 22.9 +/- 0.1 km. Using a constant Moho density contrast of 0.6 g/cm(3), the corresponding mean values for Airy-Heiskanen and VVM isostatic models become 25.0 +/- 0.04 km and 21.6 +/- 0.08 km, respectively. By assuming density contrasts of 0.5 g/cm(2) and 0.35 g/cm(3) for continental and oceanic regions, respectively, the VMM model yields the mean Moho depth 22.6 +/- 0.1 km. For this model the global rms difference to CRUST2.0 is 7.2 km, while the corresponding difference between Airy-Heiskanen model and CRUST2.0 is 11 km. Also for regional studies, Moho depths were estimated by selecting different density contrasts. Therefore, one conclusion from the study is that the global compensation by the VMM method significantly improves the agreement with the CRUST2.0 vs. the local compensation model of Airy-Heiskanen. Also, the last model cannot be correct in regions with ocean depth larger than 9 km (e.g., outside Chile), as it may yield negative Moho depths. This problem does not occur with the VMM model. A second conclusion is that a realistic variation of density contrast between continental and oceanic areas yields a better fit of the VMM model to CRUST2.0. The study suggests that the VMM model can primarily be used to densify the CRUST2.0 Moho model in many regions based on separate data by taking advantage of dense gravity data. Finally we have found also that the gravimetric terrain correction affects the determination of the Moho depth by less than 2 km in mean values for test regions, approximately. Hence, for most practical applications of the VMM model the simple Bouguer gravity anomaly is sufficient.

  • 20.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Sjöberg, Lars
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Non-isostatic effects on crustal thickness: A study using CRUST2.0 in Fennoscandia2012In: Physics of the Earth and Planetary Interiors, ISSN 0031-9201, E-ISSN 1872-7395, Vol. 200, p. 37-44Article in journal (Refereed)
    Abstract [en]

    The crustal thickness can be determined based on gravimetric-isostatic and seismic models. Modelling crustal thickness by a gravimetric-isostatic model suffers from some problems. The isostatic assumption for compensating the topographic potential is incomplete, as there are other effects which should be considered. Using the isostatic hypothesis for determining the depth of crust causes some disturbing signals, non-isostatic effects, which influence the crustal thickness determination. Isostatic and non-isostatic compensations are the main issues in this paper. We present three methods to overcome the problem due to the disturbing signals, namely the approach by truncating the spherical harmonic approach, determination of non-isostatic correction using a seismic crustal thickness model (e.g., CRUST2.0) and combination of isostatic and seismic models by applying a least-squares adjustment method. The estimated results of the non-isostatic effects varies between 65.2 and 391.8 mGal in Fennoscandia. The root mean squares difference of the crustal thickness obtained from the gravimetric-isostatic model and CRUST2.0 is improved up to six times (from 6.15 to 0.97 km) when the non-isostatic effects are considered.

  • 21.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Sjöberg, Lars E.
    University of Gävle, Sweden.
    A synthetic Earth gravity model based on a topographic-isostatic model2012In: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 56, no 4, p. 935-955Article in journal (Refereed)
    Abstract [en]

    The Earth's gravity field is related to the topographic potential in medium and higher degrees, which is isostatically compensated. Hence, the topographic-isostatic (TI) data are indispensable for extending an available Earth Gravitational Model (EGM) to higher degrees. Here we use TI harmonic coefficients to construct a Synthetic Earth Gravitational Model (SEGM) to extend the EGMs to higher degrees. To achieve a high-quality SEGM, a global geopotential model (EGM96) is used to describe the low degrees, whereas the medium and high degrees are obtained from the TI or topographic potential. This study differes from others in that it uses a new gravimetric-isostatic model for determining the TI potential. We test different alternatives based on TI or only topographic data to determine the SEGM. Although the topography is isostatically compensated only to about degree 40-60, our study shows that using a compensation model improves the SEGM in comparison with using only topographic data for higher degree harmonics. This is because the TI data better adjust the applied Butterworth filter, which bridges the known EGM and the new high-degree potential field than the topographic data alone.

  • 22.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Sjöberg, Lars E
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Determination of crustal thickness by Vening Meinesz-Moritz hypothesis and its geodetic applications2010Conference paper (Other (popular science, discussion, etc.))
  • 23.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Tenzer, Robert
    Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast - a case study of Zealandia2013In: Journal of Earth System Science, E-ISSN 0973-774X, Vol. 122, no 2, p. 339-348Article in journal (Refereed)
    Abstract [en]

    We compare three different numerical schemes of treating the Moho density contrast in gravimetric inverse problems for finding the Moho depths. The results are validated using the global crustal model CRUST2.0, which is determined based purely on seismic data. Firstly, the gravimetric recovery of the Moho depths is realized by solving Moritz's generalization of the Vening-Meinesz inverse problem of isostasy while the constant Moho density contrast is adopted. The Pratt-Hayford isostatic model is then facilitated to estimate the variable Moho density contrast. This variable Moho density contrast is subsequently used to determine the Moho depths. Finally, the combined least-squares approach is applied to estimate jointly the Moho depths and density contract based on a priori error model. The EGM2008 global gravity model and the DTM2006.0 global topographic/bathymetric model are used to generate the isostatic gravity anomalies. The comparison of numerical results reveals that the optimal isostatic inverse scheme should take into consideration both the variable depth and density of compensation. This is achieved by applying the combined least-squares approach for a simultaneous estimation of both Moho parameters. We demonstrate that the result obtained using this method has the best agreement with the CRUST2.0 Moho depths. The numerical experiments are conducted at the regional study area of New Zealand's continental shelf.

  • 24.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Tenzer, Robert
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy2014In: Studia Geophysica et Geodaetica, ISSN 0039-3169, E-ISSN 1573-1626, Vol. 58, no 2, p. 227-248Article in journal (Refereed)
    Abstract [en]

    We formulate an error propagation model based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy. The system of observation equations in the VMM model defines the relation between the isostatic gravity data and the Moho depth by means of a second-order Fredholm integral equation of the first kind. The corresponding error model (derived in a spectral domain) functionally relates the Moho depth errors with the commission errors of used gravity and topographic/bathymetric models. The error model also incorporates the non-isostatic bias which describes the disagreement, mainly of systematic nature, between the isostatic and seismic models. The error analysis is conducted at the study area of the Tibetan Plateau and Himalayas with the world largest crustal thickness. The Moho depth uncertainties due to errors of the currently available global gravity and topographic models are estimated to be typically up to 1-2 km, provided that the GOCE gravity gradient observables improved the medium-wavelength gravity spectra. The errors due to disregarding sedimentary basins can locally exceed similar to 2 km. The largest errors (which cause a systematic bias between isostatic and seismic models) are attributed to unmodeled mantle heterogeneities (including the core-mantle boundary) and other geophysical processes. These errors are mostly less than 2 km under significant orogens (Himalayas, Ural), but can reach up to similar to 10 km under the oceanic crust.

  • 25.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. University of Gävle, Sweden.
    Tenzer, Robert
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Abrehdary, Majid
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    On the residual isostatic topography effect in the gravimetric Moho determination2015In: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670, Vol. 83, p. 28-36Article in journal (Refereed)
    Abstract [en]

    In classical isostatic models, a uniform crustal density is typically assumed, while disregarding the crustal density heterogeneities. This assumption, however, yields large errors in the Moho geometry determined from gravity data, because the actual topography is not fully isostatically compensated. Moreover, the sub-crustal density structures and additional geodynamic processes contribute to the overall isostatic balance. In this study we investigate the effects of unmodelled density structures and geodynamic processes on the gravity anomaly and the Moho geometry. For this purpose, we define the residual isostatic topography as the difference between actual topography and isostatic topography, which is computed based on utilizing the Vening Meinesz-Moritz isostatic theory. We show that the isostatic gravity bias due to disagreement between the actual and isostatically compensated topography varies between 382 and 596 mGal. This gravity bias corresponds to the Moho correction term of 16 to 25 km. Numerical results reveal that the application of this Moho correction to the gravimetrically determined Moho depths significantly improves the RMS fit of our result with some published global seismic and gravimetric Moho models. We also demonstrate that the isostatic equilibrium at long-to-medium wavelengths (up to degree of about 40) is mainly controlled by a variable Moho depth, while the topographic mass balance at a higher-frequency spectrum is mainly attained by a variable crustal density.

  • 26.
    Bagherbandi, Mohammad
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Tenzer, Robert
    Sjöberg, Lars E.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Novak, Pavel
    Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction2013In: Journal of Geodynamics, ISSN 0264-3707, E-ISSN 1879-1670, Vol. 66, p. 25-37Article in journal (Refereed)
    Abstract [en]

    In classical isostatic models for a gravimetric recovery of the Moho parameters (i.e., Moho depths and density contrast) the isostatic gravity anomalies are usually defined based on the assumption that the topographic mass surplus and the ocean mass deficiency are compensated within the Earth's crust. As acquired in this study, this assumption yields large disagreements between isostatic and seismic Moho models. To assess the effects not accounted for in classical isostatic models, we conduct a number of numerical experiments using available global gravity and crustal structure models. First, we compute the gravitational contributions of mass density contrasts due to ice and sediments, and subsequently evaluate respective changes in the Moho geometry. Residual differences between the gravimetric and seismic Moho models are then used to predict a remaining non-isostatic gravity signal, which is mainly attributed to unmodeled density structures and other geophysical phenomena. We utilize three recently developed computational schemes in our numerical studies. The apparatus of spherical harmonic analysis and synthesis is applied in forward modeling of the isostatic gravity disturbances. The Moho depths are estimated globally on a 1 arc-deg equiangular grid by solving the Vening-Meinesz Moritz inverse problem of isostasy. The same estimation model is applied to evaluate the differences between the isostatic and seismic models. We demonstrate that the application of the ice and sediment density contrasts stripping gravity corrections is essential for a more accurate determination of the Moho geometry. We also show that the application of the additional non-isostatic correction further improves the agreement between the Moho models derived based on gravity and seismic data. Our conclusions are based on comparing the gravimetric results with the CRUST2.0 global crustal model compiled using results of seismic surveys.

  • 27.
    Ban, Yifang
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Jacob, Alexander
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping2013In: IEEE Transactions on Geoscience and Remote Sensing, ISSN 0196-2892, E-ISSN 1558-0644, Vol. 51, no 4, p. 1998-2006Article in journal (Refereed)
    Abstract [en]

    The objectives of this research are to develop robust methods for segmentation of multitemporal synthetic aperture radar (SAR) and optical data and to investigate the fusion of multitemporal ENVISAT advanced synthetic aperture radar (ASAR) and Chinese HJ-1B multispectral data for detailed urban land-cover mapping. Eight-date multiangle ENVISAT ASAR images and one-date HJ-1B charge-coupled device image acquired over Beijing in 2009 are selected for this research. The edge-aware region growing and merging (EARGM) algorithm is developed for segmentation of SAR and optical data. Edge detection using a Sobel filter is applied on SAR and optical data individually, and a majority voting approach is used to integrate all edge images. The edges are then used in a segmentation process to ensure that segments do not grow over edges. The segmentation is influenced by minimum and maximum segment sizes as well as the two homogeneity criteria, namely, a measure of color and a measure of texture. The classification is performed using support vector machines. The results show that our EARGM algorithm produces better segmentation than eCognition, particularly for built-up classes and linear features. The best classification result (80%) is achieved using the fusion of eight-date ENVISAT ASAR and HJ-1B data. This represents 5%, 11%, and 14% improvements over eCognition, HJ-1B, and ASAR classifications, respectively. The second best classification is achieved using fusion of four-date ENVISAT ASAR and HJ-1B data (78%). The result indicates that fewer multitemporal SAR images can achieve similar classification accuracy if multitemporal multiangle dual-look-direction SAR data are carefully selected.

  • 28.
    Baranov, Alexey
    et al.
    Russian Acad Sci, Schmidt Inst Phys Earth, Moscow 119991, Russia.;Russian Acad Sci, Inst Earthquake Predict Theory & Math Geophys, Moscow 119991, Russia..
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management, Geodesy and Satellite Positioning.
    Tenzer, Robert
    Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Hong Kong, Peoples R China..
    Combined Gravimetric-Seismic Moho Model of Tibet2018In: Geosciences, E-ISSN 2076-3263, Vol. 8, no 12, article id UNSP 461Article in journal (Refereed)
    Abstract [en]

    Substantial progress has been achieved over the last four decades to better understand a deep structure in the Himalayas and Tibet. Nevertheless, the remoteness of this part of the world still considerably limits the use of seismic data. A possible way to overcome this practical restriction partially is to use products from the Earth's satellite observation systems. Global topographic data are provided by the Shuttle Radar Topography Mission (SRTM). Global gravitational models have been derived from observables delivered by the gravity-dedicated satellite missions, such as the Gravity Recovery and Climate Experiment (GRACE) and the Gravity field and steady-state Ocean Circulation Explorer (GOCE). Optimally, the topographic and gravity data should be combined with available results from tomographic surveys to interpret the lithospheric structure, including also a Moho relief. In this study, we use seismic, gravity, and topographic data to estimate the Moho depth under orogenic structures of the Himalayas and Tibet. The combined Moho model is computed based on solving the Vening Meinesz-Moritz (VMM) inverse problem of isostasy, while incorporating seismic data to constrain the gravimetric solution. The result of the combined gravimetric-seismic data analysis exhibits an anticipated more detailed structure of the Moho geometry when compared to the solution obtained merely from seismic data. This is especially evident over regions with sparse seismic data coverage. The newly-determined combined Moho model of Tibet shows a typical contrast between a thick crustal structure of orogenic formations compared to a thinner crust of continental basins. The Moho depth under most of the Himalayas and the Tibetan Plateau is typically within 60-70 km. The maximum Moho deepening of similar to 76 km occurs to the south of the Bangong-Nujiang suture under the Lhasa terrane. Local maxima of the Moho depth to similar to 74 km are also found beneath Taksha at the Karakoram fault. This Moho pattern generally agrees with the findings from existing gravimetric and seismic studies, but some inconsistencies are also identified and discussed in this study.

  • 29. Baranov, Alexey
    et al.
    Tenzer, Robert
    Bagherbandi, Mohammad
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment. University of Gävle, Sweden.
    Combined Gravimetric-Seismic Crustal Model for Antarctica2018In: Surveys in geophysics, ISSN 0169-3298, E-ISSN 1573-0956, Vol. 39, no 1, p. 23-56Article, review/survey (Refereed)
    Abstract [en]

    The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).

  • 30.
    Becker, T. M.
    et al.
    Southwest Res Inst, San Antonio, TX 78228 USA..
    Retherford, K. D.
    Southwest Res Inst, San Antonio, TX 78228 USA..
    Roth, Lorenz
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Hendrix, A. R.
    Planetary Sci Inst, Tucson, AZ USA..
    McGrath, M. A.
    SETI Inst, Mountain View, CA USA..
    Saur, J.
    Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany..
    The Far-UV Albedo of Europa From HST Observations2018In: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 123, no 5, p. 1327-1342Article in journal (Refereed)
    Abstract [en]

    We present an analysis of Europa's far-UV spectral albedo using observations during the 1999-2015 time period made by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Disk-integrated observations show that the far-UV spectrum in the similar to 130 to 170-nm range is relatively flat or slightly blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman- (121.6nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. Also at this wavelength, the albedo of the leading hemisphere, which is higher than the trailing hemisphere at near-UV and visible wavelengths, is lower than the trailing hemisphere, exhibiting spectral inversion. We find no evidence of a sharp water-ice absorption edge at 165nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on the icy Saturnian satellites. Plain Language Summary We used observations spanning from 1999 to 2015 obtained by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope to study the surface reflectance of Europa at far-ultraviolet (UV) wavelengths. We find that Europa has a low reflectance in the UV and that there is little variation in the surface brightness at most of the UV wavelengths. When observed at visible wavelengths, one of Europa's hemispheres is brighter than the other, but at the UV wavelength of 121.6nm, the hemisphere brightness is reversed. We also find that Europa looks different from the icy moons of Saturn at far-UV wavelengths.

  • 31.
    Belonoshko, Anatoly
    et al.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.
    Rosengren, Anders
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.
    Iron shear modulus in the Earth's inner core2010In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 74, no 12, p. A75-A75Article in journal (Other academic)
  • 32. Benazzouz, Brahim K.
    et al.
    Zaoui, Ali
    Belonoshko, Anatoly B.
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Condensed Matter Theory.
    Determination of the melting temperature of kaolinite by means of the Z-method2013In: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 98, no 10, p. 1881-1885Article in journal (Refereed)
    Abstract [en]

    The melting temperature of materials is an important thermodynamic property. Despite the importance of kaolinite, one of the most common clay minerals on the Earth's surface, its thermal and melting behavior is poorly understood. We apply here the Z-method to determine the melting temperature (T-m) and the limit of superheating (T-LS) of kaolinite. The T-m is found at 1818 K (8.85 GPa), and T-LS at 1971 K (6.8 GPa). The diffusion coefficient for all atoms has been calculated in a broad temperature range. The calculated characteristics and, in particular, their dependence on temperature have confirmed the solid-liquid transition and strongly support the calculated melting point. In addition, some computed quantities, such as the radial distribution function, coordination numbers and mean-square displacement, were used to confirm the liquid state of kaolinite from the melting temperature as well as at other temperatures in the liquid branch. The diffusion coefficient for different atoms has been calculated throughout the isochore. These quantities and in particular their evolution under temperature have confirmed the solid-liquid states of kaolinite and the presence of the melting point. The latter quantity constitutes the first ever melting simulation of a clay mineral with close agreement to the experimental one.

  • 33.
    Bhatnagar, Shailesh
    et al.
    Cent Groundwater Board, Jammu, North West Hima, India..
    Taloor, Ajay Kumar
    Univ Jammu, Dept Remote Sensing & GIS, Jammu 180006, India..
    Roy, Sagarika
    Indian Inst Sci, Dept Civil Engn, Bangalore, Karnataka, India..
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Delineation of aquifers favorable for groundwater development using Schlumberger configuration resistivity survey techniques in Rajouri district of Jammu and Kashmir, India2022In: GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, ISSN 2352-801X, Vol. 17, article id 100764Article in journal (Refereed)
    Abstract [en]

    The primary goal of this research is to demarcate aquifers favorable for groundwater development in the border district of Rajouri, in the Union Territory of Jammu, and Kashmir, in order to secure a long-term water supply. The Schlumberger configuration resistivity survey technique Vertical Electrical Sounding (VES) is used to investigate the characteristics of the subsurface layer and the potential of groundwater by using 30 VES sites in order to establish the optimum sites for digging a successful borehole for the qualitative and quantitative in-terpretations in the study area. It is determined that real resistivity values of subsurface geoelectric layers less than 35 Ohm m indicate the existence of finer sediments, whilst moderate resistivity values ranging from 35 to 100 Ohm m suggest the presence of coarser sediments favorable for groundwater development. The resistivity value between 100 and 200 Ohm m indicates weathered formation, 200-400 Ohm m, indicates fractured rock and more than 400 Ohm m represents hard formation which is devoid of any kind of groundwater development. The bedrock resistivity, nature of the curve, and overburden thickness are the parameters utilized to choose a good site for drilling tests. Based on the criteria, it was determined that nine VES sites (VES-2, VES-3, VES-4, VES -6, VES-17, VES-18, VES-19, VES-28, and VES-30) are appropriate for the installation of a tube well for irrigation and domestic purposes. The 8 sites (VES-14, VES-15, VES-20, VES-21, VES-22, VES-23, VES-24, and VES-27) were not suitable because of compact formation and harder rocks whereas the 13 VES sites (VES-1, VES-5, VES-7, VES-8, VES-9, VES-10, VES-11, VES-12, VES-13, VES-16, VES-25, VES-26, VES-29) are partially suitable for groundwater development and only suitable for personal uses such as hand pump of shallow depth.

  • 34.
    Birkholzer, Jens T.
    et al.
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA..
    Tsang, Chin-Fu
    Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.;Uppsala Univ, Uppsala, Sweden..
    Bond, Alexander E.
    Quintessa Ltd, Birchwood, England..
    Hudson, John A.
    Imperial Coll London, London, England..
    Jing, Lanru
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Stephansson, Ove
    GFZ Helmholtz Ctr Geosci, Potsdam, Germany..
    25 years of DECOVALEX - Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes2019In: International Journal of Rock Mechanics And Mining Sciences, ISSN 1365-1609, E-ISSN 1873-4545, Vol. 122, article id UNSP 103995Article, review/survey (Refereed)
    Abstract [en]

    This paper provides an overview of an international research collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. The creation of the international DECOVALEX Project, now running for over 25 years, was initially motivated by the recognition that prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel. Later it was realized that these processes also play a critical role in other subsurface engineering activities, such as storage of CO2, exploration of enhanced geothermal systems, and unconventional oil and gas production through hydraulic fracturing. Research teams from radioactive waste management organizations, national research institutes, regulatory agencies, universities, as well as industry and consulting groups have participated in the DECOVALEX Project, providing a wide range of perspectives and solutions to these complex problems. Analysis and comparative modeling of state-of-the-art field and laboratory experiments has been at the core of the collaborative work, with an increasing focus on characterizing uncertainty and blind prediction of experimental results. Over these 25 years, many of the major advances in this field of research have been made through DECOVALEX, as evidenced by three books, seven journal special issues, and a good number of seminal papers that have emerged from the DECOVALEX modeling work. Examples of specific research advances will be presented in this paper to illustrate the significant impact of DECOVALEX on the current state-of-the-art of understanding and modeling coupled THMC processes. These examples range from the modeling of large-scale in situ heater tests representing mock-ups of nuclear waste disposal tunnels, to studies of fluid flow and chemical-mechanical coupling in heterogeneous fractures, and to the numerical analysis of controlled-injection meso-scale fault slip experiments.

  • 35.
    Biswas, Ashis
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Kalyani, India .
    Neidhardt, Harald
    Kundu, Amit K.
    Halder, Dipti
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Kalyani, India .
    Chatterjee, Debashis
    Berner, Zsolt
    Jacks, Gunnar
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Spatial, vertical and temporal variation of arsenic in shallow aquifers of the Bengal Basin: Controlling geochemical processes2014In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 387, p. 157-169Article in journal (Refereed)
    Abstract [en]

    A detailed understanding of the geochemical processes that regulate the spatial, temporal and vertical variation of dissolved arsenic (As) in shallow aquifers (<50 m) is a prerequisite for sustainable drinking water management in the Bengal Basin. The present study conducted at Chakdaha Block of the Nadia District, West Bengal, India, combined a high resolution hydrogeochemical monitoring study over 20 months from two sets of piezometers (2 x 5) to the sediment geochemistry at areas with high (average:146 mu g/L, n = 5) and relatively low (average: 53.3 mu g/L, n = 10) dissolved As concentrations in groundwater. The determination of the isotopic composition of delta H-2 and delta O-18 in groundwater of the two sites indicated the recharge of evaporative surface water to the aquifer. The concentrations of major aqueous solutes (Ca2+, Mg2+, Na+, K+, HCO3- and Cl-) and electrical conductivity were considerably higher in wells at the high As site compared to the low As site. Additionally, at the high As site, the major ions, Fe, SO42-, electrical conductivity, delta H-2 and delta O-18 showed markedly greater enrichment in the shallowest part (<24 m) of the aquifer compared to the deeper part, reflecting vertical layering of groundwater composition within the aquifer. The oxidation of pyrites has been attributed to the high rate of mineral dissolution resulting in such greater enrichments in this part of the aquifer. In addition, the anthropogenic input with recharge water possibly increased the concentrations of Cl- in this part of the aquifer. The vertical layering of groundwater was absent in the aquifer at the low As site. The absence of such layering and relatively low major ion concentrations and electrical conductivity could be linked to the enhanced aquifer flushing and decreased water-ediment interactions influenced by local-scale groundwater abstraction. The seasonal variations of As concentrations in groundwater were observed only in the shallowest part of the aquifers (<30 m). Furthermore, the As concentrations in groundwater at the uppermost part of the shallow aquifers (<21 m) increased continuously over the monitoring period at both sites. This study supports the view that the reductive dissolution of Fe oxyhydroxides coupled with competitive PO43- sorption reactions in the aquifer sediment enriches As in groundwater of the Bengal Basin. However, the additional Fe released by the weathering of silicate minerals, especially biotite, or the precipitation of Fe as secondary mineral phases such as siderite, vivianite and acid volatile sulfides may result in the decoupling of As and Fe enrichment in groundwater. The redox zonation within the aquifer possibly regulates the vertical distribution of As in the groundwater.

  • 36.
    Björnbom, Pehr
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Temperature lapse rates at restricted thermodynamic equilibrium in the Earth system2015In: Dynamics of atmospheres and oceans (Print), ISSN 0377-0265, E-ISSN 1872-6879, Vol. 69, p. 26-36Article in journal (Refereed)
    Abstract [en]

    Equilibrium temperature profiles obtained by maximizing the entropy of a column of fluid with a given height and-volume under the influence of gravity are discussed by using numerical experiments. Calculations are made both for the case of an ideal gas and for a liquid with constant isobaric heat capacity, constant compressibility and constant thermal expansion coefficient representing idealized conditions corresponding to atmosphere and ocean. Calculations confirm the classical equilibrium condition by Gibbs that an isothermal temperature profile gives a maximum in entropy constrained by a constant mass and a constant sum of internal and potential energy. However, it was also found that an isentropic profile gives a maximum in entropy constrained by a constant mass and a constant internal energy of the fluid column. On the basis of this result a hypothesis is suggested that the adiabatic lapse rate represents a restricted or transitory and metastable equilibrium state, which has a maximum in entropy with lower value than the maximum in the state with an isothermal lapse rate. This transitory equilibrium state is maintained by passive forces, preventing or slowing down the transition of the system to the final or ultimate equilibrium state.

  • 37.
    Blöcker, Aljona
    et al.
    KTH, School of Electrical Engineering (EES). Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany.
    Saur, Joachim
    Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany..
    Roth, Lorenz
    KTH, School of Electrical Engineering (EES).
    Strobel, Darrell F.
    Johns Hopkins Univ, Dept Earth & Planetary Sci, Baltimore, MD 21218 USA.;Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA..
    MHD Modeling of the Plasma Interaction With Io's Asymmetric Atmosphere2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 11, p. 9286-9311Article in journal (Refereed)
    Abstract [en]

    Io's atmosphere, with an average equatorial column density of >= 10(20) m(-2), exhibits significant density variations with latitude and longitude. We apply a 3-D magnetohydrodynamic model to investigate the effects of atmospheric asymmetries, both locally from volcanic plumes and globally, on the plasma and magnetic field environment of Io. The model takes into account collisions between ions and neutrals, plasma production and loss due to electron impact ionization and dissociative recombination, and the ionospheric Hall effect. Our simulation results show that volcanic plumes influence the plasma interaction locally, generating Alfven winglets within Io's global Alfven wing. Signals from individual plumes can however barely be probed by magnetic field measurements during spacecraft flybys at Io. In contrast, the surface number density, scale height, the longitudinal and latitudinal variations of the global atmosphere are crucial factors for modeling and understanding magnetic field and plasma perturbations. Comparing our model results with the magnetic field data from the 124 and 127 flybys of the Galileo spacecraft, we find that the measured perturbations can be primarily caused by the plasma interaction with the longitudinally asymmetric atmosphere. This implies that a significant magnetic induction signal from a partially molten magma ocean is not necessarily required to explain the Galileo magnetometer data.

  • 38. Boardsen, Scott A.
    et al.
    Sundberg, Torbjorn
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Slavin, James A.
    Anderson, Brian J.
    Korth, Haje
    Solomon, Sean C.
    Blomberg, Lars G.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury's magnetosphere during MESSENGER's third flyby2010In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 37, article id L12101Article in journal (Refereed)
    Abstract [en]

    During the third MESSENGER flyby of Mercury on 29 September 2009, 15 crossings of the dusk-side magnetopause were observed in the magnetic field data over a 2-min period, during which the spacecraft traveled a distance of 0.2 R-M (where R-M is Mercury's radius). The quasi-periodic nature of the magnetic field variations during the crossings, the characteristic time separations of similar to 16 s between pairs of crossings, and the variations of the magnetopause normal directions indicate that the signals are likely the signature of surface waves highly steepened at their leading edge that arose from the Kelvin-Helmholtz instability. At Earth, the Kelvin-Helmholtz instability is believed to lead to the turbulent transport of solar wind plasma into Earth's plasma sheet. This solar wind entry mechanism could also be important at Mercury. Citation: Boardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury's magnetosphere during MESSENGER's third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.

  • 39. Bozic, B.
    et al.
    Fan, Huaan
    KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics.
    Milosavljevic, Z.
    Establishment of the MGI EDM calibration baseline2013In: Survey review - Directorate of Overseas Surveys, ISSN 0039-6265, E-ISSN 1752-2706, Vol. 45, no 331, p. 263-268Article in journal (Refereed)
    Abstract [en]

    This paper deals with the estimation of the quality of the baseline for the calibration of distance measurement devices which was established by Serbian Military Geographic Institute for military use. The basic characteristics of the baseline are explained, and a plan for the checking of the baseline quality is proposed. The measurements realised so far can be grouped into two phases. The measurements have been processed, and the estimates of the distances of this length standard have been obtained. The standard deviations of the least squares estimates of the lengths were better than 0.3 mm in each epoch. This precision offers the possibility to check all measurement devices with a minimum uncertainty of the calibrations, of +/-(1 mm + 1 ppm). The stability of the pillars is also analysed. The conventional deformation analysis method was applied to three datasets and the results obtained by evaluating them are shown.

  • 40. Breuillard, H.
    et al.
    Le Contel, O.
    Chust, T.
    Berthomier, M.
    Retino, A.
    Turner, D. L.
    Nakamura, R.
    Baumjohann, W.
    Cozzani, G.
    Catapano, F.
    Alexandrova, A.
    Mirioni, L.
    Graham, D. B.
    Argall, M. R.
    Fischer, D.
    Wilder, F. D.
    Gershman, D. J.
    Varsani, A.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Khotyaintsev, Yu. V.
    Marklund, G.
    Ergun, R. E.
    Goodrich, K. A.
    Ahmadi, N.
    Burch, J. L.
    Torbert, R. B.
    Needell, G.
    Chutter, M.
    Rau, D.
    Dors, I.
    Russell, C. T.
    Magnes, W.
    Strangeway, R. J.
    Bromund, K. R.
    Wei, H.
    Plaschke, F.
    Anderson, B. J.
    Le, G.
    Moore, T. E.
    Giles, B. L.
    Paterson, W. R.
    Pollock, C. J.
    Dorelli, J. C.
    Avanov, L. A.
    Saito, Y.
    Lavraud, B.
    Fuselier, S. A.
    Mauk, B. H.
    Cohen, I. J.
    Fennell, J. F.
    The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission2018In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 1, p. 93-103Article in journal (Refereed)
    Abstract [en]

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency similar to 100Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2f(ce) by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  • 41. Breuillard, H.
    et al.
    Le Contel, O.
    Retino, A.
    Chasapis, A.
    Chust, T.
    Mirioni, L.
    Graham, D. B.
    Wilder, F. D.
    Cohen, I.
    Vaivads, Andris
    Khotyaintsev, Yu V.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Marklund, Göran T.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Burch, J. L.
    Torbert, R. B.
    Ergun, R. E.
    Goodrich, K. A.
    Macri, J.
    Needell, J.
    Chutter, M.
    Rau, D.
    Dors, I.
    Russell, C. T.
    Magnes, W.
    Strangeway, R. J.
    Bromund, K. R.
    Plaschke, F.
    Fischer, D.
    Leinweber, H. K.
    Anderson, B. J.
    Le, G.
    Slavin, J. A.
    Kepko, E. L.
    Baumjohann, W.
    Mauk, B.
    Fuselier, S. A.
    Nakamura, R.
    Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 14, p. 7279-7286Article in journal (Refereed)
    Abstract [en]

    Dipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth's plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic electrons up to the high-latitude plasma sheet. However, the dynamics of DF propagation and associated low-frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a string-of-pearls configuration with an average intersatellite distance of 160km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (approximate to 500km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.

  • 42.
    Bundschuh, Jochen
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. University of Applied Sciences, Institute of Applied Research, Karlsruhe, Germany.
    Arriaga, Mario César Suárez
    Department of Applied Mathematics and Earth Sciences, Faculty of Physics and Mathematical Sciences, Michoacán University UMSNH, Morelia, Michoacán, Mexico, Michoacán.
    Introduction to the Numerical Modeling of Groundwater and Geothermal Systems: Fundamentals of Mass, Energy and Solute Transport in Poroelastic Rocks2010Book (Other academic)
    Abstract [en]

    This book provides an introduction to the scientific fundamentals of groundwater and geothermal systems. In a simple and didactic manner the different water and energy problems existing in deformable porous rocks are explained as well as the corresponding theories and the mathematical and numerical tools that lead to modeling and solving them. This.

  • 43. Cao, D.
    et al.
    Fu, H. S.
    Cao, J. B.
    Wang, T. Y.
    Graham, D. B.
    Chen, Z. Z.
    Peng, F. Z.
    Huang, S. Y.
    Khotyaintsev, Y. V.
    Andre, M.
    Russell, C. T.
    Giles, B. L.
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Torbert, R. B.
    Ergun, R. E.
    Le Contel, O.
    Burch, J. L.
    MMS observations of whistler waves in electron diffusion region2017In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 44, no 9, p. 3954-3962Article in journal (Refereed)
    Abstract [en]

    Whistler waves that can produce anomalous resistivity by affecting electrons' motion have been suggested as one of the mechanisms responsible for magnetic reconnection in the electron diffusion region (EDR). Such type of waves, however, has rarely been observed inside the EDR so far. In this study, we report such an observation by Magnetospheric Multiscale (MMS) mission. We find large-amplitude whistler waves propagating away from the X line with a very small wave-normal angle. These waves are probably generated by the perpendicular temperature anisotropy of the -300eV electrons inside the EDR, according to our analysis of dispersion relation and cyclotron resonance condition; they significantly affect the electron-scale dynamics of magnetic reconnection and thus support previous simulations.

  • 44. Cazzola, E.
    et al.
    Innocenti, M. E.
    Goldman, M. V.
    Newman, D. L.
    Markidis, Stefano
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
    Lapenta, G.
    On the electron agyrotropy during rapid asymmetric magnetic island coalescence in presence of a guide field2016In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 43, no 15, p. 7840-7849Article in journal (Refereed)
    Abstract [en]

    We present an analysis of the properties of the electron velocity distribution during island coalescence in asymmetric reconnection with and without guide field. In a previous study, three main domains were identified, in the case without guide field, as X, D, and M regions featuring different reconnection evolutions. These regions are also identified here in the case with guide field. We study the departure from isotropic and gyrotropic behavior by means of different robust detection algorithms proposed in the literature. While in the case without guide field these metrics show an overall agreement, when the guide field is present, a discrepancy in the agyrotropy within some relevant regions is observed, such as at the separatrices and inside magnetic islands. Moreover, in light of the new observations from the Multiscale MagnetoSpheric mission, an analysis of the electron velocity phase-space in these domains is presented.

  • 45. Chen, Y.F
    et al.
    Zhou, C.B
    Mao, X.Y
    Jing, Lanru
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    Numerical simulation of coupled thermal elastic behaviors for hard rock pillar in Äspö Pillar Stability Experiment, Sweden2010In: Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, ISSN 1000-4548, Vol. 32, no 8, p. 1200-1206Article in journal (Refereed)
    Abstract [en]

    The goal of the Äspö Pillar Stability Experiment performed in Äspö Hard Rock Laboratory, Sweden is to investigate the mechanical response and progressive failure process of ahard rock pillar during excavation and heating. Numerical simulation of the thermalelastic behaviors for the pillar is one of the three tasks of the DECOVALEX-2011 project. The evolutions of stress, deformation and temperature of the pillar are modeled by using a coupled thermal elasticity model. The research results demonstrate that the thermalelasticity model is suitable for describing the coupled thermal mechanical behaviors of the pillar during excavation and heating. The stress redistribution and temperature evolution processes of the pillar are largely modeled, and the failure process and its propagation are qualitatively analyzed. The major limitations of the thermal elasticity model are its absence of the multiphase flow and progressive failure processes. The model developed and the modeling experiences accumulated in this study may be helpful for the stability and safety assessment of the hard granite host rock in China's Beishan preselected area for high-level radioactive waste disposal.

  • 46. Chernouss, S.
    et al.
    Alpatov, V.
    Demekhov, A.
    Deehr, C.
    Brandström, U.
    Widell, O.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Koustov, A.
    Pirjola, R.
    Sergienko, T.
    Sandahl, I.
    Marklund, Göran
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Project "Development of the Methodology of Experiment and Technical Support for Studies of the Flow Cyclotron Maser in the Earth's Magnetosphere by Creating an Artificial Ionization Cloud From a Geophysical Rocket"2012In: Óptica Pura y Aplicada, ISSN 0030-3917, E-ISSN 2171-8814, Vol. 45, no 1, p. 45-49Article in journal (Refereed)
    Abstract [en]

    Investigation of the wave particle interaction in the magnetosphere and ionosphere by controllable experiment in near Earth space is in focus of modern space geophysics. We propose to stimulate auroral precipitation by changing parameters of the Flow Cyclotron Maser (FCM) and test the FCM model itself. One of the main goals of the project is inducing of artificial pulsating aurora.

  • 47.
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Statistical Formulation of Generalized Tracer Retention in Fractured Rock2017In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 53, no 11, p. 8736-8759Article in journal (Refereed)
    Abstract [en]

    We study tracer retention in fractured rock by combing Lagrangian and time domain random walk frameworks, as well as a statistical representation of the retention process. Mass transfer is quantified by the retention time distribution that follows from a Lagrangian coupling between advective transport and mass exchange processes, applicable for advection-dominated transport. A unifying parametrization is presented for generalized diffusion using two rates denoted by k(1) and k(2) where k(1) is a forward rate and k(2) a reverse rate, plus an exponent as an additional parameter. For the Fickian diffusion model, k(1) and k(2) are related to measurable retention properties of the fracture-matrix by the method of moments, whereas for the non-Fickian case dimensional analysis is used. The derived retention time distributions are exemplified for interpreting tracer tests as well as for predictive modeling of expected tracer breakthrough. We show that non-Fickian effects can be notable when transport is upscaled based on a non-Fickian interpretation of a tracer test for which deviations from Fickianity are relatively small. The statistical representation of retention clearly shows the significance of the forward rate k(1) which depends on the active specific surface area and is the most difficult parameter to characterize in the field.

  • 48. Dahlgren, H.
    et al.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Lanchester, B. S.
    Monoenergetic high-energy electron precipitation in thin auroral filaments2012In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, no 20, p. L20101-Article in journal (Refereed)
    Abstract [en]

    The energy distribution of the electron precipitation responsible for extremely narrow (70 m) and dynamic auroral filaments is found to be sharply peaked at around 8 keV. The events were captured with high resolution low-light optical imagers located near Tromso, Norway. The method uses imaging in two emissions which have different energy dependent responses to auroral electron precipitation. The key feature of the events was that no difference in the altitude of the two emissions was detected, nor any time-of-flight dispersion, thus leading to the conclusion that the filaments were caused by monoenergetic precipitation. Comparisons with an electron transport and ion chemistry model show that the high energy filaments were embedded in a region of lower energy precipitation of about 4 keV. There is currently no consistent theory to explain the characteristics of the observed auroral structures.

  • 49.
    Dahlgren, Hanna
    et al.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. University of Southampton, United Kingdom.
    Lanchester, B. S.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Whiter, D. K.
    Electrodynamics and energy characteristics of aurora at high resolution by optical methods2016In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 121, no 6, p. 5966-5974Article in journal (Refereed)
    Abstract [en]

    Technological advances leading to improved sensitivity of optical detectors have revealed that aurora contains a richness of dynamic and thin filamentary structures, but the source of the structured emissions is not fully understood. In addition, high-resolution radar data have indicated that thin auroral arcs can be correlated with highly varying and large electric fields, but the detailed picture of the electrodynamics of auroral filaments is yet incomplete. The Auroral Structure and Kinetics (ASK) instrument is a state-of-the-art ground-based instrument designed to investigate these smallest auroral features at very high spatial and temporal resolution, by using three electron multiplying CCDs in parallel for three different narrow spectral regions. ASK is specifically designed to utilize a new optical technique to determine the ionospheric electric fields. By imaging the long-lived O+ line at 732 nm, the plasma flow in the region can be traced, and since the plasma motion is controlled by the electric field, the field strength and direction can be estimated at unprecedented resolution. The method is a powerful tool to investigate the detailed electrodynamics and current systems around the thin auroral filaments. The two other ASK cameras provide information on the precipitation by imaging prompt emissions, and the emission brightness ratio of the two emissions, together with ion chemistry modeling, is used to give information on the energy and energy flux of the precipitating electrons. In this paper, we discuss these measuring techniques and give a few examples of how they are used to reveal the nature and source of fine-scale structuring in the aurora.

  • 50. Daras, I.
    et al.
    Fan, Huaan
    KTH, School of Architecture and the Built Environment (ABE), Transport and Economics, Geodesy.
    Papazissi, K.
    Fairhead, J. D.
    Determination of a Gravimetric Geoid Model of Greece Using the Method of KTH2010In: Gravity, Geoid And Earth Observation, Springer Berlin/Heidelberg, 2010, p. 407-413Conference paper (Refereed)
    Abstract [en]

    The main purpose of this study is to compute a gravimetric geoid model of Greece using the least squares modification method developed at KTH. In regional gravimetric geoid determination, the modified Stokes' formula that combines local terrestrial data with a global geopotential model is often used nowadays. In this study, the optimum modification of Stokes' formula, introduced by Sjöberg (2003), is employed so that the expected mean square error (MSE) of the combined geoid height is minimized. According to this stochastic method, the geoid height is first computed from modified Stokes' formula using surface gravity data and a global geopotential model (GGM). The precise geoid height is then obtained by adding the topographic, downward continuation, atmospheric and ellipsoidal corrections to the approximate geoid height. In this study the downward continuation correction was not considered for the precise geoid height computations due to a limited DEM. The dataset used for the computations, consisted of terrestrial gravimetric measurements, a DEM model and GPS/Levelling data for the Greek region. Three global geopotential models (EGM96, EIGEN-GRACE02S, EIGEN-GL04C) were tested for choosing the best GGM to be combined into the final solution. Regarding the evaluation and refinement of the terrestrial gravity measurements, the cross-validation technique has been used for detection of outliers. The new Greek gravimetric geoid model was evaluated with 18 GPS/Levelling points of the Greek geodetic network. After using a 7-parameter model to fit the geoid model to the GPS/Levelling data, the agreement between the absolute geoid heights derived from the gravimetric method and the GPS/Levelling data, was estimated to 27 cm while the agreement for the relative geoid heights after the fitting, to 0.9 ppm. In an optimal case study, considering the accuracies of the ellipsoidal and orthometric heights as σh≈±10 cm and σH≈±20 cm respectively, the RMS fit of the model with the GPS/Levelling data was estimated to σN≈±15 cm. The geoid model computed in this study was also compared with some previous Greek geoid models, yielding better external accuracy than them.

123456 1 - 50 of 269
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf