Change search
Refine search result
1234567 1 - 50 of 343
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aarno, Daniel
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ekvall, Staffan
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Adaptive virtual fixtures for machine-assisted teleoperation tasks2005In: 2005 IEEE International Conference on Robotics and Automation (ICRA), Vols 1-4, 2005, p. 1139-1144Conference paper (Refereed)
    Abstract [en]

    It has been demonstrated in a number of robotic areas how the use of virtual fixtures improves task performance both in terms of execution time and overall precision, [1]. However, the fixtures are typically inflexible, resulting in a degraded performance in cases of unexpected obstacles or incorrect fixture models. In this paper, we propose the use of adaptive virtual fixtures that enable us to cope with the above problems. A teleoperative or human machine collaborative setting is assumed with the core idea of dividing the task, that the operator is executing, into several subtasks. The operator may remain in each of these subtasks as long as necessary and switch freely between them. Hence, rather than executing a predefined plan, the operator has the ability to avoid unforeseen obstacles and deviate from the model. In our system, the probability that the user is following a certain trajectory (subtask) is estimated and used to automatically adjusts the compliance. Thus, an on-line decision of how to fixture the movement is provided.

  • 2.
    Aarno, Daniel
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Layered HMM for motion intention recognition2006In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, NEW YORK: IEEE , 2006, p. 5130-5135Conference paper (Refereed)
    Abstract [en]

    Acquiring, representing and modeling human skins is one of the key research areas in teleoperation, programming. by-demonstration and human-machine collaborative settings. One of the common approaches is to divide the task that the operator is executing into several subtasks in order to provide manageable modeling. In this paper we consider the use of a Layered Hidden Markov Model (LHMM) to model human skills. We evaluate a gestem classifier that classifies motions into basic action-primitives, or gestems. The gestem classifiers are then used in a LHMM to model a simulated teleoperated task. We investigate the online and offline classilication performance with respect to noise, number of gestems, type of HAIM and the available number of training sequences. We also apply the LHMM to data recorded during the execution of a trajectory-tracking task in 2D and 3D with a robotic manipulator in order to give qualitative as well as quantitative results for the proposed approach. The results indicate that the LHMM is suitable for modeling teleoperative trajectory-tracking tasks and that the difference in classification performance between one and multi dimensional HMMs for gestem classification is small. It can also be seen that the LHMM is robust w.r.t misclassifications in the underlying gestem classifiers.

  • 3. Agarwal, P.
    et al.
    Al Moubayed, Samer
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Alspach, A.
    Kim, J.
    Carter, E. J.
    Lehman, J. F.
    Yamane, K.
    Imitating human movement with teleoperated robotic head2016In: 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, IEEE, 2016, p. 630-637Conference paper (Refereed)
    Abstract [en]

    Effective teleoperation requires real-time control of a remote robotic system. In this work, we develop a controller for realizing smooth and accurate motion of a robotic head with application to a teleoperation system for the Furhat robot head [1], which we call TeleFurhat. The controller uses the head motion of an operator measured by a Microsoft Kinect 2 sensor as reference and applies a processing framework to condition and render the motion on the robot head. The processing framework includes a pre-filter based on a moving average filter, a neural network-based model for improving the accuracy of the raw pose measurements of Kinect, and a constrained-state Kalman filter that uses a minimum jerk model to smooth motion trajectories and limit the magnitude of changes in position, velocity, and acceleration. Our results demonstrate that the robot can reproduce the human head motion in real time with a latency of approximately 100 to 170 ms while operating within its physical limits. Furthermore, viewers prefer our new method over rendering the raw pose data from Kinect.

  • 4. Agarwal, Priyanshu
    et al.
    Al Moubayed, Samer
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Alspach, Alexander
    Kim, Joohyung
    Carter, Elizabeth J.
    Lehman, Jill Fain
    Yamane, Katsu
    Imitating Human Movement with Teleoperated Robotic Head2016In: 2016 25TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2016, p. 630-637Conference paper (Refereed)
    Abstract [en]

    Effective teleoperation requires real-time control of a remote robotic system. In this work, we develop a controller for realizing smooth and accurate motion of a robotic head with application to a teleoperation system for the Furhat robot head [1], which we call TeleFurhat. The controller uses the head motion of an operator measured by a Microsoft Kinect 2 sensor as reference and applies a processing framework to condition and render the motion on the robot head. The processing framework includes a pre-filter based on a moving average filter, a neural network-based model for improving the accuracy of the raw pose measurements of Kinect, and a constrained-state Kalman filter that uses a minimum jerk model to smooth motion trajectories and limit the magnitude of changes in position, velocity, and acceleration. Our results demonstrate that the robot can reproduce the human head motion in real time with a latency of approximately 100 to 170 ms while operating within its physical limits. Furthermore, viewers prefer our new method over rendering the raw pose data from Kinect.

  • 5.
    Alberti, Marina
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Chemical Science and Engineering (CHE).
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Relational approaches for joint object classification andscene similarity measurement in indoor environments2014In: Proc. of 2014 AAAI Spring Symposium QualitativeRepresentations for Robots 2014, Palo Alto, California: The AAAI Press , 2014Conference paper (Refereed)
    Abstract [en]

    The qualitative structure of objects and their spatial distribution,to a large extent, define an indoor human environmentscene. This paper presents an approach forindoor scene similarity measurement based on the spatialcharacteristics and arrangement of the objects inthe scene. For this purpose, two main sets of spatialfeatures are computed, from single objects and objectpairs. A Gaussian Mixture Model is applied both onthe single object features and the object pair features, tolearn object class models and relationships of the objectpairs, respectively. Given an unknown scene, the objectclasses are predicted using the probabilistic frameworkon the learned object class models. From the predictedobject classes, object pair features are extracted. A fi-nal scene similarity score is obtained using the learnedprobabilistic models of object pair relationships. Ourmethod is tested on a real world 3D database of deskscenes, using a leave-one-out cross-validation framework.To evaluate the effect of varying conditions on thescene similarity score, we apply our method on mockscenes, generated by removing objects of different categoriesin the test scenes.

  • 6.
    Alexanderson, Simon
    et al.
    KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH.
    House, David
    KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH.
    Beskow, Jonas
    KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH.
    Automatic annotation of gestural units in spontaneous face-to-face interaction2016In: MA3HMI 2016 - Proceedings of the Workshop on Multimodal Analyses Enabling Artificial Agents in Human-Machine Interaction, 2016, p. 15-19Conference paper (Refereed)
    Abstract [en]

    Speech and gesture co-occur in spontaneous dialogue in a highly complex fashion. There is a large variability in the motion that people exhibit during a dialogue, and different kinds of motion occur during different states of the interaction. A wide range of multimodal interface applications, for example in the fields of virtual agents or social robots, can be envisioned where it is important to be able to automatically identify gestures that carry information and discriminate them from other types of motion. While it is easy for a human to distinguish and segment manual gestures from a flow of multimodal information, the same task is not trivial to perform for a machine. In this paper we present a method to automatically segment and label gestural units from a stream of 3D motion capture data. The gestural flow is modeled with a 2-level Hierarchical Hidden Markov Model (HHMM) where the sub-states correspond to gesture phases. The model is trained based on labels of complete gesture units and self-adaptive manipulators. The model is tested and validated on two datasets differing in genre and in method of capturing motion, and outperforms a state-of-the-art SVM classifier on a publicly available dataset.

  • 7.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Caccamo, Sergio
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Chen, Xi
    KTH.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Haustein, Joshua
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Marzinotto, Alejandro
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yannis
    KTH.
    Ögren, Petter
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017In: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 8.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH.
    Karayiannidis, Yiannis
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. Dept. of Electrical Eng., Chalmers University of Technology.
    A Framework for Bimanual Folding Assembly Under Uncertainties2017In: Workshop – Towards robust grasping and manipulation skills for humanoids, 2017Conference paper (Other academic)
  • 9.
    Almeida, Diogo
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Karayiannidis, Yiannis
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL. Dept. of Electrical Eng., Chalmers University of Technology.
    Cooperative Manipulation and Identification of a 2-DOF Articulated Object by a Dual-Arm Robot2018In: / [ed] IEEE, 2018Conference paper (Refereed)
    Abstract [en]

    In this work, we address the dual-arm manipula-tion of a two degrees-of-freedom articulated object that consistsof two rigid links. This can include a linkage constrainedalong two motion directions, or two objects in contact, wherethe contact imposes motion constraints. We formulate theproblem as a cooperative task, which allows the employment ofcoordinated task space frameworks, thus enabling redundancyexploitation by adjusting how the task is shared by the robotarms. In addition, we propose a method that can estimate thejoint location and the direction of the degrees-of-freedom, basedon the contact forces and the motion constraints imposed bythe object. Experimental results demonstrate the performanceof the system in its ability to estimate the two degrees of freedomindependently or simultaneously.

  • 10.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH.
    Karayiannidis, Yiannis
    Chalmers, Sweden.
    Dexterous manipulation by means of compliant grasps and external contacts2017In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, IEEE, 2017, p. 1913-1920, article id 8206010Conference paper (Refereed)
    Abstract [en]

    We propose a method that allows for dexterousmanipulation of an object by exploiting contact with an externalsurface. The technique requires a compliant grasp, enablingthe motion of the object in the robot hand while allowingfor significant contact forces to be present on the externalsurface. We show that under this type of grasp it is possibleto estimate and control the pose of the object with respect tothe surface, leveraging the trade-off between force control andmanipulative dexterity. The method is independent of the objectgeometry, relying only on the assumptions of type of grasp andthe existence of a contact with a known surface. Furthermore,by adapting the estimated grasp compliance, the method canhandle unmodelled effects. The approach is demonstrated andevaluated with experiments on object pose regulation andpivoting against a rigid surface, where a mechanical springprovides the required compliance.

  • 11.
    Almeida, Diogo
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Karayiannidis, Yiannis
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL. Chalmers University of Technology.
    Folding Assembly by Means of Dual-Arm Robotic Manipulation2016In: 2016 IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2016, p. 3987-3993Conference paper (Refereed)
    Abstract [en]

    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.

  • 12.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH.
    Karayiannidis, Yiannis
    Robotic Manipulation for Bi-Manual Folding Assembly2015In: Late Breaking Posters, 2015Conference paper (Other academic)
    Abstract [en]

    In this poster the problem of bimanual robotic assembly is considered. In particular we introduce folding assembly which is an assembly task that requires significant rotational motion in order to mate two assembly pieces. We model the connection between the two parts as an ideal virtual prismatic and revolute joint while non-ideal effects on the part movements can be considered as special cases of the ideal virtual joint. The connection between the gripper and the assembly part is also studied by considering the case of rigid and non-rigid grasp. As a proof-of-concept, a stabilizing controller for the assembly task is derived following a bimanual master-slave approach under the assumption of rigid grasps. The controller is validated through simulation while an example object has been designed and printed for experimental validation of our assembly technique.

  • 13.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Viña, Francisco E.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Karayiannidis, Yiannis
    Bimanual Folding Assembly: Switched Control and Contact Point Estimation2016In: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, 2016, Cancun: IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    Robotic assembly in unstructured environments is a challenging task, due to the added uncertainties. These can be mitigated through the employment of assembly systems, which offer a modular approach to the assembly problem via the conjunction of primitives. In this paper, we use a dual-arm manipulator in order to execute a folding assembly primitive. When executing a folding primitive, two parts are brought into rigid contact and posteriorly translated and rotated. A switched controller is employed in order to ensure that the relative motion of the parts follows the desired model, while regulating the contact forces. The control is complemented with an estimator based on a Kalman filter, which tracks the contact point between parts based on force and torque measurements. Experimental results are provided, and the effectiveness of the control and contact point estimation is shown.

  • 14. Alomari, M.
    et al.
    Duckworth, P.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Hawasly, M.
    Hogg, D. C.
    Cohn, A. G.
    Grounding of human environments and activities for autonomous robots2017In: IJCAI International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence , 2017, p. 1395-1402Conference paper (Refereed)
    Abstract [en]

    With the recent proliferation of human-oriented robotic applications in domestic and industrial scenarios, it is vital for robots to continually learn about their environments and about the humans they share their environments with. In this paper, we present a novel, online, incremental framework for unsupervised symbol grounding in real-world, human environments for autonomous robots. We demonstrate the flexibility of the framework by learning about colours, people names, usable objects and simple human activities, integrating stateofthe-art object segmentation, pose estimation, activity analysis along with a number of sensory input encodings into a continual learning framework. Natural language is grounded to the learned concepts, enabling the robot to communicate in a human-understandable way. We show, using a challenging real-world dataset of human activities as perceived by a mobile robot, that our framework is able to extract useful concepts, ground natural language descriptions to them, and, as a proof-ofconcept, generate simple sentences from templates to describe people and the activities they are engaged in.

  • 15.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Meta-rooms: Building and Maintaining Long Term Spatial Models in a Dynamic World2014In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE conference proceedings, 2014, p. 1854-1861Conference paper (Refereed)
    Abstract [en]

    We present a novel method for re-creating the static structure of cluttered office environments -which we define as the " meta-room" -from multiple observations collected by an autonomous robot equipped with an RGB-D depth camera over extended periods of time. Our method works directly with point clusters by identifying what has changed from one observation to the next, removing the dynamic elements and at the same time adding previously occluded objects to reconstruct the underlying static structure as accurately as possible. The process of constructing the meta-rooms is iterative and it is designed to incorporate new data as it becomes available, as well as to be robust to environment changes. The latest estimate of the meta-room is used to differentiate and extract clusters of dynamic objects from observations. In addition, we present a method for re-identifying the extracted dynamic objects across observations thus mapping their spatial behaviour over extended periods of time.

  • 16.
    Andreasson, Martin
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Undamped Nonlinear Consensus Using Integral Lyapunov Functions2012In: 2012 American Control Conference (ACC), IEEE Computer Society, 2012, p. 6644-6649Conference paper (Refereed)
    Abstract [en]

    This paper analyzes a class of nonlinear consensus algorithms where the input of an agent can be decoupled into a product of a gain function of the agents own state, and a sum of interaction functions of the relative states of its neighbors. We prove the stability of the protocol for both single and double integrator dynamics using novel Lyapunov functions, and provide explicit formulas for the consensus points. The results are demonstrated through simulations of a realistic example within the framework of our proposed consensus algorithm.

  • 17.
    Andreasson, Martin
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Sandberg, Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Distributed PI-Control with Applications to Power Systems Frequency Control2014In: American Control Conference (ACC), 2014, IEEE conference proceedings, 2014, p. 3183-3188Conference paper (Refereed)
    Abstract [en]

    This paper considers a distributed PI-controller for networked dynamical systems. Sufficient conditions for when the controller is able to stabilize a general linear system and eliminate static control errors are presented. The proposed controller is applied to frequency control of power transmission systems. Sufficient stability criteria are derived, and it is shown that the controller parameters can always be chosen so that the frequencies in the closed loop converge to nominal operational frequency. We show that the load sharing property of the generators is maintained, i.e., the input power of the generators is proportional to a controller parameter. The controller is evaluated by simulation on the IEEE 30 bus test network, where its effectiveness is demonstrated.

  • 18.
    Antonova, Rika
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Cruciani, Silvia
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Smith, Christian
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Reinforcement Learning for Pivoting TaskManuscript (preprint) (Other academic)
    Abstract [en]

    In this work we propose an approach to learn a robust policy for solving the pivoting task. Recently, several model-free continuous control algorithms were shown to learn successful policies without prior knowledge of the dynamics of the task. However, obtaining successful policies required thousands to millions of training episodes, limiting the applicability of these approaches to real hardware. We developed a training procedure that allows us to use a simple custom simulator to learn policies robust to the mismatch of simulation vs robot. In our experiments, we demonstrate that the policy learned in the simulator is able to pivot the object to the desired target angle on the real robot. We also show generalization to an object with different inertia, shape, mass and friction properties than those used during training. This result is a step towards making model-free reinforcement learning available for solving robotics tasks via pre-training in simulators that offer only an imprecise match to the real-world dynamics.

  • 19.
    Antonova, Rika
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Rai, Akshara
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Atkeson, Christopher G.
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Deep kernels for optimizing locomotion controllers2017In: Proceedings of the 1st Annual Conference on Robot Learning, PMLR , 2017Conference paper (Refereed)
    Abstract [en]

    Sample efciency is important when optimizing parameters of locomotion controllers, since hardware experiments are time consuming and expensive. Bayesian Optimization, a sample-efcient optimization framework, has recently been widely applied to address this problem, but further improvements in sample efciency are needed for practical applicability to real-world robots and highdimensional controllers. To address this, prior work has proposed using domain expertise for constructing custom distance metrics for locomotion. In this work we show how to learn such a distance metric automatically. We use a neural network to learn an informed distance metric from data obtained in high-delity simulations. We conduct experiments on two different controllers and robot architectures. First, we demonstrate improvement in sample efciency when optimizing a 5-dimensional controller on the ATRIAS robot hardware. We then conduct simulation experiments to optimize a 16-dimensional controller for a 7-link robot model and obtain signicant improvements even when optimizing in perturbed environments. This demonstrates that our approach is able to enhance sample efciency for two different controllers, hence is a tting candidate for further experiments on hardware in the future. Keywor

  • 20.
    Antonova, Rika
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Rai, Akshara
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Atkeson, Christopher G.
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Sample efficient optimization for learning controllers for bipedal locomotion2016Conference paper (Refereed)
    Abstract [en]

    Learning policies for bipedal locomotion can be difficult, as experiments are expensive and simulation does not usually transfer well to hardware. To counter this, we need algorithms that are sample efficient and inherently safe. Bayesian Optimization is a powerful sample-efficient tool for optimizing non-convex black-box functions. However, its performance can degrade in higher dimensions. We develop a distance metric for bipedal locomotion that enhances the sample-efficiency of Bayesian Optimization and use it to train a 16 dimensional neuromuscular model for planar walking. This distance metric reflects some basic gait features of healthy walking and helps us quickly eliminate a majority of unstable controllers. With our approach we can learn policies for walking in less than 100 trials for a range of challenging settings. In simulation, we show results on two different costs and on various terrains including rough ground and ramps, sloping upwards and downwards. We also perturb our models with unknown inertial disturbances analogous with differences between simulation and hardware. These results are promising, as they indicate that this method can potentially be used to learn control policies on hardware.

  • 21.
    Antonova, Rika
    et al.
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Rai, Akshara
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Atkeson, Christopher G.
    Robotics Institute, School of Computer Science, Carnegie Mellon University, USA.
    Sample efficient optimization for learning controllers for bipedal locomotion2016In: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), 2016, IEEE conference proceedings, 2016Conference paper (Refereed)
    Abstract [en]

    Learning policies for bipedal locomotion can be difficult, as experiments are expensive and simulation does not usually transfer well to hardware. To counter this, we need algorithms that are sample efficient and inherently safe. Bayesian Optimization is a powerful sample-efficient tool for optimizing non-convex black-box functions. However, its performance can degrade in higher dimensions. We develop a distance metric for bipedal locomotion that enhances the sample-efficiency of Bayesian Optimization and use it to train a 16 dimensional neuromuscular model for planar walking. This distance metric reflects some basic gait features of healthy walking and helps us quickly eliminate a majority of unstable controllers. With our approach we can learn policies for walking in less than 100 trials for a range of challenging settings. In simulation, we show results on two different costs and on various terrains including rough ground and ramps, sloping upwards and downwards. We also perturb our models with unknown inertial disturbances analogous with differences between simulation and hardware. These results are promising, as they indicate that this method can potentially be used to learn control policies on hardware.

  • 22.
    Axelsson, Unnar
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Underwater feature extraction and pillar mapping2015Report (Other academic)
    Abstract [en]

    A mechanicaly scanned imaging sonar, MSIS, pro-duces a 2D image of the range and bearing of return intensities.The pattern produced in this image depends on the envior-mental feature that caused it. These features are very usefulfor underwater navigation but the inverse mapping of sonarimage pattern to environmental feature can be ambiguous. Weinvestigate problems associated with using MSIS for navigation.In particular we show that support vector machines can be usedto classify the existance and types of feature in a sonar image.We develop a sonar processing pipleline that can be used fornavigation. This is tested on two sonar datasets collected fromROV’s. 1

  • 23.
    Aydemir, Alper
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Exploiting structure in man-made environments2012Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Robots are envisioned to take on jobs that are dirty, dangerous and dull, the three D's of robotics. With this mission, robotic technology today is ubiquitous on the factory floor. However, the same level of success has not occurred when it comes to robots that operate in everyday living spaces, such as homes and offices.

    A big part of this is attributed to domestic environments being complex and unstructured as opposed to factory settings which can be set up and precisely known in advance. In this thesis we challenge the point of view which regards man-made environments as unstructured and that robots should operate without prior assumptions about the world. Instead, we argue that robots should make use of the inherent structure of everyday living spaces across various scales and applications, in the form of contextual and prior information, and that doing so can improve the performance of robotic tasks.

    To investigate this premise, we start by attempting to solve a hard and realistic problem, active visual search. The particular scenario considered is that of a mobile robot tasked with finding an object on an entire unexplored building floor. We show that a search strategy which exploits the structure of indoor environments offers significant improvements on state of the art and is comparable to humans in terms of search performance. Based on the work on active visual search, we present two specific ways of making use of the structure of space. First, we propose to use the local 3D geometry as a strong indicator of objects in indoor scenes. By learning a 3D context model for various object categories, we demonstrate a method that can reliably predict the location of objects. Second, we turn our attention to predicting what lies in the unexplored part of the environment at the scale of rooms and building floors. By analyzing a large dataset, we propose that indoor environments can be thought of as being composed out of frequently occurring functional subparts. Utilizing these, we present a method that can make informed predictions about the unknown part of a given indoor environment.

    The ideas presented in this thesis explore various sides of the same idea: modeling and exploiting the structure inherent in indoor environments for the sake of improving robot's performance on various applications. We believe that in addition to contributing some answers, the work presented in this thesis will generate additional, fruitful questions.

  • 24.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Exploiting and modeling local 3D structure for predicting object locations2012In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE , 2012, p. 3885-3892Conference paper (Refereed)
    Abstract [en]

    In this paper, we argue that there is a strong correlation between local 3D structure and object placement in everyday scenes. We call this the 3D context of the object. In previous work, this is typically hand-coded and limited to flat horizontal surfaces. In contrast, we propose to use a more general model for 3D context and learn the relationship between 3D context and different object classes. This way, we can capture more complex 3D contexts without implementing specialized routines. We present extensive experiments with both qualitative and quantitative evaluations of our method for different object classes. We show that our method can be used in conjunction with an object detection algorithm to reduce the rate of false positives. Our results support that the 3D structure surrounding objects in everyday scenes is a strong indicator of their placement and that it can give significant improvements in the performance of, for example, an object detection system. For evaluation, we have collected a large dataset of Microsoft Kinect frames from five different locations, which we also make publicly available.

  • 25.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    What can we learn from 38,000 rooms?: Reasoning about unexplored space in indoor environments2012In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE , 2012, p. 4675-4682Conference paper (Refereed)
    Abstract [en]

    Many robotics tasks require the robot to predict what lies in the unexplored part of the environment. Although much work focuses on building autonomous robots that operate indoors, indoor environments are neither well understood nor analyzed enough in the literature. In this paper, we propose and compare two methods for predicting both the topology and the categories of rooms given a partial map. The methods are motivated by the analysis of two large annotated floor plan data sets corresponding to the buildings of the MIT and KTH campuses. In particular, utilizing graph theory, we discover that local complexity remains unchanged for growing global complexity in real-world indoor environments, a property which we exploit. In total, we analyze 197 buildings, 940 floors and over 38,000 real-world rooms. Such a large set of indoor places has not been investigated before in the previous work. We provide extensive experimental results and show the degree of transferability of spatial knowledge between two geographically distinct locations. We also contribute the KTH data set and the software tools to with it.

  • 26.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Järleberg, Erik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Prentice, S.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Predicting what lies ahead in the topology of indoor environments2012In: Spatial Cognition VIII: International Conference, Spatial Cognition 2012, Kloster Seeon, Germany, August 31 – September 3, 2012. Proceedings / [ed] Cyrill Stachniss, Kerstin Schill, David Uttal, Springer, 2012, p. 1-16Conference paper (Refereed)
    Abstract [en]

    A significant amount of research in robotics is aimed towards building robots that operate indoors yet there exists little analysis of how human spaces are organized. In this work we analyze the properties of indoor environments from a large annotated floorplan dataset. We analyze a corpus of 567 floors, 6426 spaces with 91 room types and 8446 connections between rooms corresponding to real places. We present a system that, given a partial graph, predicts the rest of the topology by building a model from this dataset. Our hypothesis is that indoor topologies consists of multiple smaller functional parts. We demonstrate the applicability of our approach with experimental results. We expect that our analysis paves the way for more data driven research on indoor environments.

  • 27.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Gobelbecker, Moritz
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Active Visual Object Search in Unknown Environments Using Uncertain Semantics2013In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 29, no 4, p. 986-1002Article in journal (Refereed)
    Abstract [en]

    In this paper, we study the problem of active visual search (AVS) in large, unknown, or partially known environments. We argue that by making use of uncertain semantics of the environment, a robot tasked with finding an object can devise efficient search strategies that can locate everyday objects at the scale of an entire building floor, which is previously unknown to the robot. To realize this, we present a probabilistic model of the search environment, which allows for prioritizing the search effort to those parts of the environment that are most promising for a specific object type. Further, we describe a method for reasoning about the unexplored part of the environment for goal-directed exploration with the purpose of object search. We demonstrate the validity of our approach by comparing it with two other search systems in terms of search trajectory length and time. First, we implement a greedy coverage-based search strategy that is found in previous work. Second, we let human participants search for objects as an alternative comparison for our method. Our results show that AVS strategies that exploit uncertain semantics of the environment are a very promising idea, and our method pushes the state-of-the-art forward in AVS.

  • 28.
    Aydemir, Alper
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Sjöö, Kristoffer
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Pronobis, Andrzej
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Search in the real world: Active visual object search based on spatial relations2011In: IEEE International Conference on Robotics and Automation (ICRA), 2011, IEEE , 2011, p. 2818-2824Conference paper (Refereed)
    Abstract [en]

    Objects are integral to a robot’s understandingof space. Various tasks such as semantic mapping, pick-andcarrymissions or manipulation involve interaction with objects.Previous work in the field largely builds on the assumption thatthe object in question starts out within the ready sensory reachof the robot. In this work we aim to relax this assumptionby providing the means to perform robust and large-scaleactive visual object search. Presenting spatial relations thatdescribe topological relationships between objects, we thenshow how to use these to create potential search actions. Weintroduce a method for efficiently selecting search strategiesgiven probabilities for those relations. Finally we performexperiments to verify the feasibility of our approach.

  • 29.
    Banuazizi, Seyed Amir Hossein
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Autonomous Systems for Characterization of Spin Torque Oscillators: Design, Production, Optimization and Measurement2013Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
    Abstract [en]

    The Spin Torque Oscillator (STO) is a nano-scale electrical device, with a wide current and field tunability, highly promising for applications in next generation wide band microwave frequency generators, multifunction microwave components, ultra-fast microwave sensors, etc. For a better fundamental understanding of the functional properties of STOs it is important to develop flexible and easy-to-use characterization tools, in particular for routine test and characterization in preparation for a successful commercial applications. Most present measurement systems do not fulfill these qualities and have very low through-put. Therefore, an automated system including all capabilities for characterization of STO is indeed necessary in laboratories. In this work, two different setups for characterization of STO are proposed, designed and built. To increase measurement performance a high frequency (up to 60 GHz) measurement setup was designed and built based on the rotation of a large field electromagnet (up to 2 T), instead of rotating the sample as in older system. A second high frequency measurement setup utilizes a total of 5 degrees of freedom to rotate and position a permanent magnet with a magnetic field of 1 T. Moreover, as preliminary experimental investigation of STOs, the resistance of nanocantact (NC) STOs with different NC size and variation of the thickness of the Cu seed layer, was studied to find the real NC size based on Sharvin-Maxwell methods. The study resolves how the real resistance value of the NC and the resistance of the mesa varies. This will help to understand the microwave power delivery issues between the mesa and the NC and has direct applicability to the problem of impedance matching between these two sub-elements. This study will be finally useful to find a criteria for seed layer thickness and necessary NC size in order to get a high output power from STOs and will assist to design novel geometries of high power STO for commercial applications.

  • 30. Barnes, N.
    et al.
    Loy, Gareth
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Real-time regular polygonal sign detection2006Conference paper (Refereed)
    Abstract [en]

    In this paper, we present a new adaptation of the regular polygon detection algorithm for real-time road sign detection for autonomous vehicles. The method is robust to partial occlusion and fading, and insensitive to lighting conditions. We experimentally demonstrate its application to the detection of various signs, particularly evaluating it on a sequence of roundabout signs taken from the ANU/NICTA vehicle. The algorithm runs faster than 20 frames per second on a standard PC, detecting signs of the size that appears in road scenes, as observed from a camera mounted on the rear-vision mirror. The algorithm uses the symmetric nature of regular polygonal shapes, we also use the constrained appearance of such shapes in the road scene to the car in order to facilitate their fast, robust detection.

  • 31. Bednarski, M
    et al.
    Cholewa, W
    Frid, Wiktor
    KTH, Superseded Departments, Energy Technology.
    Identification of sensitivities in Bayesian networks2004In: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 17, no 4, p. 327-335Article in journal (Refereed)
    Abstract [en]

    This paper presents a methodology for sensitivity analysis that can be applied to Bayesian belief networks, i.e. analysis of the influence of the quality of network parameters (such as conditional and a priori probabilities) on the values of the hypothesis variable(s). The presented methodology makes use of one-way sensitivity analysis and makes it possible to apply a particular mathematical model for relations between the considered parameter and distribution of values in the node of interest (hypothesis node). The sensitivity analysis has been applied to a network describing a Nuclear Power Plant during fault conditions.

  • 32.
    Behere, Sagar
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    A Generic Framework for Robot Motion Planning and Control2010Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis deals with the general problem of robot motion planning and control. It proposes the hypothesis that it should bepossible to create a generic software framework capable of dealing with all robot motion planning and control problems, independent of the robot being used, the task being solved, the workspace obstacles or the algorithms employed. The thesis work then consisted of identifying the requirements and creating a design and implementation of such a framework. This report motivates and documents the entire process. The framework developed was tested on two different robot arms under varying conditions. The testing method and results are also presented.The thesis concludes that the proposed hypothesis is indeed valid.

  • 33.
    Behere, Sagar
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Embedded Control Systems.
    Architecting Autonomous Automotive Systems: With an emphasis on Cooperative Driving2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The increasing usage of electronics and software in a modern automobile enables realization of many advanced features. One such feature is autonomous driving. Autonomous driving means that a human driver’s intervention is not required to drive the automobile; rather, theautomobile is capable of driving itself. Achieving automobile autonomyrequires research in several areas, one of which is the area of automotive electrical/electronics (E/E) architectures. These architectures deal with the design of the computer hardware and software present inside various subsystems of the vehicle, with particular attention to their interaction and modularization. The aim of this thesis is to investigate how automotive E/E architectures should be designed so that 1) it ispossible to realize autonomous features and 2) a smooth transition canbe made from existing E/E architectures, which have no explicit support for autonomy, to future E/E architectures that are explicitly designed for autonomy.The thesis begins its investigation by considering the specific problem of creating autonomous behavior under cooperative driving condi-tions. Cooperative driving conditions are those where continuous wireless communication exists between a vehicle and its surroundings, which consist of the local road infrastructure as well as the other vehicles in the vicinity. In this work, we define an original reference architecture for cooperative driving. The reference architecture demonstrates how a subsystem with specific autonomy features can be plugged into an existing E/E architecture, in order to realize autonomous driving capabilities. Two salient features of the reference architecture are that it isminimally invasive and that it does not dictate specific implementation technologies. The reference architecture has been instantiated on two separate occasions and is the main contribution of this thesis. Another contribution of this thesis is a novel approach to the design of general, autonomous, embedded systems architectures. The approach introduces an artificial consciousness within the architecture, that understands the overall purpose of the system and also how the different existing subsystems should work together in order to meet that purpose.This approach can enable progressive autonomy in existing embedded systems architectures, over successive design iterations.

  • 34. Bekiroglu, Y.
    et al.
    Damianou, A.
    Detry, Renaud
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. University of Liège.
    Stork, Johannes A.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ek, Carl Henrik
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. University of Bristol.
    Probabilistic consolidation of grasp experience2016In: Proceedings - IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2016, p. 193-200Conference paper (Refereed)
    Abstract [en]

    We present a probabilistic model for joint representation of several sensory modalities and action parameters in a robotic grasping scenario. Our non-linear probabilistic latent variable model encodes relationships between grasp-related parameters, learns the importance of features, and expresses confidence in estimates. The model learns associations between stable and unstable grasps that it experiences during an exploration phase. We demonstrate the applicability of the model for estimating grasp stability, correcting grasps, identifying objects based on tactile imprints and predicting tactile imprints from object-relative gripper poses. We performed experiments on a real platform with both known and novel objects, i.e., objects the robot trained with, and previously unseen objects. Grasp correction had a 75% success rate on known objects, and 73% on new objects. We compared our model to a traditional regression model that succeeded in correcting grasps in only 38% of cases.

  • 35.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Detry, Renaud
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Joint Observation of Object Pose and Tactile Imprints for Online Grasp Stability Assessment2011Conference paper (Refereed)
    Abstract [en]

    This paper studies the viability of concurrentobject pose tracking and tactile sensing for assessing graspstability on a physical robotic platform. We present a kernellogistic-regression model of pose- and touch-conditional graspsuccess probability. Models are trained on grasp data whichconsist of (1) the pose of the gripper relative to the object,(2) a tactile description of the contacts between the objectand the fully-closed gripper, and (3) a binary descriptionof grasp feasibility, which indicates whether the grasp canbe used to rigidly control the object. The data is collectedby executing grasps demonstrated by a human on a roboticplatform composed of an industrial arm, a three-finger gripperequipped with tactile sensing arrays, and a vision-based objectpose tracking system. The robot is able to track the poseof an object while it is grasping it, and it can acquiregrasp tactile imprints via pressure sensor arrays mounted onits gripper’s fingers. We consider models defined on severalsubspaces of our input data – using tactile perceptions orgripper poses only. Models are optimized and evaluated with f-fold cross-validation. Our preliminary results show that stabilityassessments based on both tactile and pose data can providebetter rates than assessments based on tactile data alone.

  • 36.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Detry, Renaud
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Learning Tactile Characterizations Of Object- And Pose-specific Grasps2011Conference paper (Refereed)
    Abstract [en]

    Our aim is to predict the stability of a grasp from the perceptions available to a robot before attempting to lift up and transport an object. The percepts we consider consist of the tactile imprints and the object-gripper configuration read before and until the robot’s manipulator is fully closed around an object. Our robot is equipped with multiple tactile sensing arrays and it is able to track the pose of an object during the application of a grasp. We present a kernel-logistic-regression model of pose- and touch-conditional grasp success probability which we train on grasp data collected by letting the robot experience the effect on tactile and visual signals of grasps suggested by a teacher, and letting the robot verify which grasps can be used to rigidly control the object. We consider models defined on several subspaces of our input data – e.g., using tactile perceptions or pose information only. Our experiment demonstrates that joint tactile and pose-based perceptions carry valuable grasp-related information, as models trained on both hand poses and tactile parameters perform better than the models trained exclusively on one perceptual input.

  • 37.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Huebner, Kai
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Integrating Grasp Planning with Online Stability Assessment using Tactile Sensing2011In: IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2011, p. 4750-4755Conference paper (Refereed)
    Abstract [en]

    This paper presents an integration of grasp planning and online grasp stability assessment based on tactile data. We show how the uncertainty in grasp execution posterior to grasp planning can be dealt with using tactile sensing and machine learning techniques. The majority of the state-of-the-art grasp planners demonstrate impressive results in simulation. However, these results are mostly based on perfect scene/object knowledge allowing for analytical measures to be employed. It is questionable how well these measures can be used in realistic scenarios where the information about the object and robot hand may be incomplete and/or uncertain. Thus, tactile and force-torque sensory information is necessary for successful online grasp stability assessment. We show how a grasp planner can be integrated with a probabilistic technique for grasp stability assessment in order to improve the hypotheses about suitable grasps on different types of objects. Experimental evaluation with a three-fingered robot hand equipped with tactile array sensors shows the feasibility and strength of the integrated approach.

  • 38.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kyrki, Ville
    Department of Information Technology, Lappeenranta University of Technology, Finland.
    Learning grasp stability based on tactile data and HMMs2010Conference paper (Refereed)
    Abstract [en]

    In this paper, the problem of learning grasp stability in robotic object grasping based on tactile measurements is studied. Although grasp stability modeling and estimation has been studied for a long time, there are few robots today able of demonstrating extensive grasping skills. The main contribution of the work presented here is an investigation of probabilistic modeling for inferring grasp stability based on learning from examples. The main objective is classification of a grasp as stable or unstable before applying further actions on it, e.g. lifting. The problem cannot be solved by visual sensing which is typically used to execute an initial robot hand positioning with respect to the object. The output of the classification system can trigger a regrasping step if an unstable grasp is identified. An off-line learning process is implemented and used for reasoning about grasp stability for a three-fingered robotic hand using Hidden Markov models. To evaluate the proposed method, experiments are performed both in simulation and on a real robot system.

  • 39.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Laaksonen, Janne
    Department of Information Technology, Lappeenranta University of Technology, Finland.
    Jorgensen, Jimmy Alison
    The Maersk Mc-Kinney Moller Institute University of Southern Denmark, Denmark.
    Kyrki, Ville
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Assessing Grasp Stability Based on Learning and Haptic Data2011In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 27, no 3, p. 616-629Article in journal (Refereed)
    Abstract [en]

    An important ability of a robot that interacts with the environment and manipulates objects is to deal with the uncertainty in sensory data. Sensory information is necessary to, for example, perform online assessment of grasp stability. We present methods to assess grasp stability based on haptic data and machinelearning methods, including AdaBoost, support vector machines (SVMs), and hidden Markov models (HMMs). In particular, we study the effect of different sensory streams to grasp stability. This includes object information such as shape; grasp information such as approach vector; tactile measurements fromfingertips; and joint configuration of the hand. Sensory knowledge affects the success of the grasping process both in the planning stage (before a grasp is executed) and during the execution of the grasp (closed-loop online control). In this paper, we study both of these aspects. We propose a probabilistic learning framework to assess grasp stability and demonstrate that knowledge about grasp stability can be inferred using information from tactile sensors. Experiments on both simulated and real data are shown. The results indicate that the idea to exploit the learning approach is applicable in realistic scenarios, which opens a number of interesting venues for the future research.

  • 40.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Laaksonen, Janne
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Jorgensen, Jimmy
    The Maersk Mc-Kinney Moller Institute University of Southern Denmark, Denmark.
    Kyrki, Ville
    the Department of Information Technology, Lappeenranta University of Technology, Finland.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Learning grasp stability based on haptic data2010Conference paper (Refereed)
  • 41.
    Bekiroglu, Yasemin
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Song, Dan
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Wang, Lu
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    A probabilistic framework for task-oriented grasp stability assessment2013In: 2013 IEEE International Conference on Robotics and Automation (ICRA), IEEE Computer Society, 2013, p. 3040-3047Conference paper (Refereed)
    Abstract [en]

    We present a probabilistic framework for grasp modeling and stability assessment. The framework facilitates assessment of grasp success in a goal-oriented way, taking into account both geometric constraints for task affordances and stability requirements specific for a task. We integrate high-level task information introduced by a teacher in a supervised setting with low-level stability requirements acquired through a robot's self-exploration. The conditional relations between tasks and multiple sensory streams (vision, proprioception and tactile) are modeled using Bayesian networks. The generative modeling approach both allows prediction of grasp success, and provides insights into dependencies between variables and features relevant for object grasping.

  • 42.
    Bertolli, Federico
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Christensen, Henrik I.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    SLAM using visual scan-matching with distinguishable 3D points2006In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-12, NEW YORK: IEEE , 2006, p. 4042-4047Conference paper (Refereed)
    Abstract [en]

    Scan-matching based on data from a laser scanner is frequently used for mapping and localization. This paper presents an scan-matching approach based instead on visual information from a stereo system. The Scale Invariant Feature Transform (SIFT) is used together with epipolar constraints to get high matching precision between the stereo images. Calculating the 3D position of the corresponding points in the world results in a visual scan where each point has a descriptor attached to it. These descriptors can be used when matching scans acquired from different positions. Just like in the work with laser based scan matching a map can be defined as a set of reference scans and their corresponding acquisition point. In essence this reduces each visual scan that can consist of hundreds of points to a single entity for which only the corresponding robot pose has to be estimated in the map. This reduces the overall complexity of the map. The SIFT descriptor attached to each of the points in the reference allows for robust matching and detection of loop closing situations. The paper presents real-world experimental results from an indoor office environment.

  • 43.
    Bicanski, Andrej
    et al.
    School of Engineering, École Polytechnique Fédérale de Lausanne.
    Ryczko, Dimitri
    Département de Physiologie, Université de Montréa.
    Knuesel, Jérémie
    School of Engineering, École Polytechnique Fédérale de Lausanne.
    Harischandra, Nalin
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
    Charrier, Vanessa
    INSERM U862, Neurocentre Magendie, Université Bordeaux.
    Ekeberg, Örjan
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB.
    Cabelguen, Jean-Marie
    Neurocentre Magendie, Bordeaux University, Bordeaux Cedex, France.
    Ijspeert, Auke Jan
    School of Engineering, École Polytechnique Fédérale de Lausanne.
    Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics2013In: Biological Cybernetics, ISSN 0340-1200, E-ISSN 1432-0770, Vol. 107, no 5, p. 545-564Article, review/survey (Refereed)
    Abstract [en]

    Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.

  • 44.
    Bohg, Jeannette
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Multi-Modal Scene Understanding for Robotic Grasping2011Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Current robotics research is largely driven by the vision of creatingan intelligent being that can perform dangerous, difficult orunpopular tasks. These can for example be exploring the surface of planet mars or the bottomof the ocean, maintaining a furnace or assembling a car.   They can also be more mundane such as cleaning an apartment or fetching groceries. This vision has been pursued since the 1960s when the first robots were built. Some of the tasks mentioned above, especially those in industrial manufacturing, arealready frequently performed by robots. Others are still completelyout of reach. Especially, household robots are far away from beingdeployable as general purpose devices. Although advancements have beenmade in this research area, robots are not yet able to performhousehold chores robustly in unstructured and open-ended environments givenunexpected events and uncertainty in perception and execution.In this thesis, we are analyzing which perceptual andmotor capabilities are necessaryfor the robot to perform common tasks in a household scenario. In that context, an essential capability is tounderstand the scene that the robot has to interact with. This involvesseparating objects from the background but also from each other.Once this is achieved, many other tasks becomemuch easier. Configuration of objectscan be determined; they can be identified or categorized; their pose can be estimated; free and occupied space in the environment can be outlined.This kind of scene model can then inform grasp planning algorithms to finally pick up objects.However, scene understanding is not a trivial problem and evenstate-of-the-art methods may fail. Given an incomplete, noisy andpotentially erroneously segmented scene model, the questions remain howsuitable grasps can be planned and how they can be executed robustly.In this thesis, we propose to equip the robot with a set of predictionmechanisms that allow it to hypothesize about parts of the sceneit has not yet observed. Additionally, the robot can alsoquantify how uncertain it is about this prediction allowing it toplan actions for exploring the scene at specifically uncertainplaces. We consider multiple modalities includingmonocular and stereo vision, haptic sensing and information obtainedthrough a human-robot dialog system. We also study several scene representations of different complexity and their applicability to a grasping scenario. Given an improved scene model from this multi-modalexploration, grasps can be inferred for each objecthypothesis. Dependent on whether the objects are known, familiar orunknown, different methodologies for grasp inference apply. In thisthesis, we propose novel methods for each of these cases. Furthermore,we demonstrate the execution of these grasp both in a closed andopen-loop manner showing the effectiveness of the proposed methods inreal-world scenarios.

  • 45. Bohg, Jeannette
    et al.
    Hausman, Karol
    Sankaran, Bharath
    Brock, Oliver
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Schaal, Stefan
    Sukhatme, Gaurav S.
    Interactive Perception: Leveraging Action in Perception and Perception in Action2017In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 33, no 6, p. 1273-1291Article in journal (Refereed)
    Abstract [en]

    Recent approaches in robot perception follow the insight that perception is facilitated by interaction with the environment. These approaches are subsumed under the term Interactive Perception (IP). This view of perception provides the following benefits. First, interaction with the environment creates a rich sensory signal that would otherwise not be present. Second, knowledge of the regularity in the combined space of sensory data and action parameters facilitates the prediction and interpretation of the sensory signal. In this survey, we postulate this as a principle for robot perception and collect evidence in its support by analyzing and categorizing existing work in this area. We also provide an overview of the most important applications of IP. We close this survey by discussing remaining open questions. With this survey, we hope to help define the field of Interactive Perception and to provide a valuable resource for future research.

  • 46.
    Bohg, Jeannette
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Johnson-Roberson, Matthew
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Leon, Beatriz
    Universitat Jaume I, Castellon, Spain.
    Felip, Javier
    Universitat Jaume I, Castellon, Spain.
    Gratal, Xavi
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Morales, Antonio
    Universitat Jaume I, Castellon, Spain.
    Mind the Gap - Robotic Grasping under Incomplete Observation2011In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011, New York: IEEE , 2011, p. 686-693Conference paper (Refereed)
    Abstract [en]

    We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

  • 47. Bohg, Jeannette
    et al.
    Morales, Antonio
    Asfour, Tamim
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Data-Driven Grasp Synthesis-A Survey2014In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 30, no 2, p. 289-309Article in journal (Refereed)
    Abstract [en]

    We review the work on data-driven grasp synthesis and the methodologies for sampling and ranking candidate grasps. We divide the approaches into three groups based on whether they synthesize grasps for known, familiar, or unknown objects. This structure allows us to identify common object representations and perceptual processes that facilitate the employed data-driven grasp synthesis technique. In the case of known objects, we concentrate on the approaches that are based on object recognition and pose estimation. In the case of familiar objects, the techniques use some form of a similarity matching to a set of previously encountered objects. Finally, for the approaches dealing with unknown objects, the core part is the extraction of specific features that are indicative of good grasps. Our survey provides an overview of the different methodologies and discusses open problems in the area of robot grasping. We also draw a parallel to the classical approaches that rely on analytic formulations.

  • 48. Bohg, Jeannette
    et al.
    Welke, Kai
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Leon, Beatriz
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Do, Martin
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Song, Dan
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Wohlkinger, Walter
    Automation and Control Institute, Technische Universität Wien, Austria.
    Madry, Marianna
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Aldoma, Aitor
    Automation and Control Institute, Technische Universität Wien, Austria.
    Przybylski, Markus
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Asfour, Tamim
    Institute for Anthropomatics, Karlsruhe Institute of Technology, Germany.
    Marti, Higinio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Morales, Antonio
    Department of Computer Science and Engineering, Universitat Jaume I, Spain.
    Vincze, Markus
    Automation and Control Institute, Technische Universität Wien, Austria.
    Task-based Grasp Adaptation on a Humanoid Robot2012In: Proceedings 10th IFAC Symposium on Robot Control, 2012, p. 779-786Conference paper (Refereed)
    Abstract [en]

    In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

  • 49.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Detection and Tracking of General Movable Objects in Large 3D MapsManuscript (preprint) (Other academic)
    Abstract [en]

    This paper studies the problem of detection and tracking of general objects with long-term dynamics, observed by a mobile robot moving in a large environment. A key problem is that due to the environment scale, it can only observe a subset of the objects at any given time. Since some time passes between observations of objects in different places, the objects might be moved when the robot is not there. We propose a model for this movement in which the objects typically only move locally, but with some small probability they jump longer distances, through what we call global motion. For filtering, we decompose the posterior over local and global movements into two linked processes. The posterior over the global movements and measurement associations is sampled, while we track the local movement analytically using Kalman filters. This novel filter is evaluated on point cloud data gathered autonomously by a mobile robot over an extended period of time. We show that tracking jumping objects is feasible, and that the proposed probabilistic treatment outperforms previous methods when applied to real world data. The key to efficient probabilistic tracking in this scenario is focused sampling of the object posteriors.

  • 50.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Multiple Object Detection, Tracking and Long-Term Dynamics Learning in Large 3D MapsManuscript (preprint) (Other academic)
    Abstract [en]

    In this work, we present a method for tracking and learning the dynamics of all objects in a large scale robot environment. A mobile robot patrols the environment and visits the different locations one by one. Movable objects are discovered by change detection, and tracked throughout the robot deployment. For tracking, we extend our previous Rao-Blackwellized particle filter with birth and death processes, enabling the method to handle an arbitrary number of objects. Target births and associations are sampled using Gibbs sampling. The parameters of the system are then learnt using the Expectation Maximization algorithm in an unsupervised fashion. The system therefore enables learning of the dynamics of one particular environment, and of its objects. The algorithm is evaluated on data collected autonomously by a mobile robot in an office environment during a real-world deployment. We show that the algorithm automatically identifies and tracks the moving objects within 3D maps and infers plausible dynamics models, significantly decreasing the modeling bias of our previous work. The proposed method represents an improvement over previous methods for environment dynamics learning as it allows for learning of fine grained processes.

1234567 1 - 50 of 343
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf