Change search
Refine search result
1234567 1 - 50 of 942
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbasi, Saeed
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Non-exhaust Nano particle emission in Rail traffic2010Conference paper (Refereed)
  • 2.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Jansson, Anders
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Particle emissions from rail traffic: a literature review2013In: Critical reviews in environmental science and technology, ISSN 1064-3389, E-ISSN 1547-6537, Vol. 43, no 23, p. 2211-2244Article, review/survey (Refereed)
    Abstract [en]

    Particle emissions are a drawback of rail transport. This work is a comprehensive presentation of recent research into particle emissions from rail vehicles. Both exhaust and non-exhaust particle emissions are considered when examining particle characteristics such as  PM10, and PM2.5 concentration levels, size, morphology, composition, as well as adverse health effects, current legislation, and available and proposed solutions for reducing such emissions. High concentration levels in enclosed rail traffic environments are reported and some toxic effects of the particles. We find that only a few limited studies have examined the adverse health effects of non-exhaust particle emissions and that no relevant legislation exists. Thus further research in this area is warranted.

  • 3.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Lack of applicable criteria in non-exhaust emission legislation: AWPER index a practical solution2011Conference paper (Refereed)
  • 4.
    Abbasi, Saeed
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Olander, Lars
    Larsson, christina
    A field investigation of the size, morphology and chemical composition of airborne particles in rail transport2010Conference paper (Refereed)
    Abstract [en]

    The health effects of inhalable airborne particles are well documented. In the European Union the European Council mandates that the level of airborne particles with a diameter smaller than 10 µm (PM10) must not exceed an annual average of 40 µg/m3. Examples of possible sources from rail transport are mechanical brakes, wheel rail contact, current collectors, ballast, sleepers and masonry structures. In this regard, a series of field tests have been conducted on a regular Swedish track using a regional train instrumented with: particle measurement devices, temperature sensors in brake pads and sensors to measure the magnitude of train speed and a GPS.

    Two sampling points for airborne particles were designated in the train under frame. One of the sampling points was near a pad to rotor disc brake contact and a second global sampling point was chosen under the frame, but not near a mechanical brake or the wheel-rail contact. The first one was highly influenced by brake pad wear debris and the other one was influenced by all of the brake pads, wheel and rail wear debris as well as re-suspension. In each sampling points, three tubes were linked to three particle measurement devices. Two sets of Ptrak, Dustrak and Grimm devices were used. The Ptrak 8525 was an optical particle measurement device which could measure particle diameter in the size interval of 20 nm up to 1 micrometer. The Dustrak was used to measure particle mass concentration. The Grimm 1.109 was an aerosol spectrometer which counted number of particles from 0.25 micrometer to 32 micrometer in 31 intervals. These two Grimm devices were equipped with Millipore filters in the devices outlets to capture particles for further studies on morphology and matter of particles.

    The total number and size distribution of the particles for these two sampling points were registered and evaluated in different situations such as activating and deactivating electrical brake or train curve negotiating.

    During braking, three peaks of 250 nm, 350 nm and 600 nm in diameter, with the 350 nm peak dominating were identified in the fine particle region. In the coarse particle region, a peak of around 3-6 µm in diameter was discovered. The brake pad temperature effects on particle size distribution were also investigated and the results showed that the peak around 250 nm increased. Furthermore, the activation of electrical braking significantly reduced the number of airborne particles.

    A SEM was used to capture the images from collected particles on filters. Furthermore, an ICP-Ms method was used to investigate the elemental contents of the particulates on the filter.  In this case the main contribution belonged to Fe, Si, Al, Ca, Cu, Zn. The higher amount of some elements weights such as calcium, silicon, sodium and aluminum in the global sampling point filters revealed that ballast and concrete sleepers were the main sources for these particles although some of them originated from rail, wheel, brake disc and brake pad as well.

  • 5.
    Afshari, Davood
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Mechanical Properties of Resistance Spot Welds in Lightweight Applications2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This licentiate thesis is concerned with residual stresses in aluminum alloy 6061-T6 resistance spot welded joint. Several topics related to mechanical strength of welded structures are treated such as; nugget size and microhardness and microstructures of weld zone and their influence on mechanical strength of welded structure, failure load measurement using tensile-shear test, resistance spot welding simulation, residual stress measurement by X-ray diffraction method and analysis effect of welding parameters on the mechanical strength and the residual stresses.

    To investigate the effect of resistance spot weld parameters on mechanical strength of welded structures, various welding parameters e.g. welding current, welding time and electrode force are selected to produce welded joints with different quality. According to the failure mode, the empirical equation was used to prediction of failure load base on nugget size and hardness of failure line. Microstructure study has been carried out to investigate microstructural changes in the welded joints. Microhardness tests are done to find hardness profiles due to microstructural changes and determine the minimum hardness.

    In addition, an electro-thermal-structural coupled finite element model and X-ray diffraction residual stress measurement have been utilized to analyze residual stresses distribution in weld zone. The electrical and thermal contact conductance, as mandatory factors are applied in contact area between electrode-workpiece and workpiece-workpiece to resolve the complexity of the finite element model. The physical and mechanical properties of the material are defined as thermal-dependent in order to improve the accuracy of the model. Furthermore, the electrodes are removed after holding cycle using the birth and death elements method. Moreover, the effect of welding parameters on maximum residual stress is investigated and a regression model is proposed to predict maximum tensile residual stresses in terms of welding parameters.

    The results obtained from the finite element analysis have been used to build up two back-propagation artificial neural network models for the residual stresses and the nugget size prediction. The results revealed that the neural network models created in this study can accurately predict the nugget size and the residual stresses produced in resistance spot weld. Using a combination of these two developed models, the nugget size and the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy.

  • 6.
    Afshari, Davood
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Iran University of Science and Technology, Iran.
    Sedighi, M.
    Karimi, M. R.
    Barsoum, Zuheir
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Prediction of residual stresses in resistance spot weld2016In: Aircraft Engineering and Aerospace Technology, ISSN 1748-8842, Vol. 88, no 4, p. 492-497Article in journal (Refereed)
    Abstract [en]

    Purpose - The purpose of this paper is to predict residual stresses in resistance spot weld of 2 mm thick aluminum 6061-T6 sheets. The joint use of finite element analysis and artificial neural networks can eliminate the high costs of residual stresses measuring tests and significantly shorten the time it takes to arrive at a solution. Design/methodology/approach - Finite element method and artificial neural network have been used to predict the residual stresses. Different spot welding parameters such as the welding current, the welding time and the electrode force have been used for the simulation purposes in a thermal-electrical-structural coupled finite element model. To validate the numerical results, a series of experiments have been performed, and residual stresses have been measured. The results obtained from the finite element analysis have been used to build up a back-propagation artificial neural network model for residual stresses prediction. Findings - The results revealed that the neural network model created in this study can accurately predict residual stresses produced in resistance spot weld. Using a combination of these two developed models, the residual stresses can be predicted in terms of spot weld parameters with high speed and accuracy. Practical implications - The paper includes implication for aircraft and automobile industries to predict residual stresses. Residual stresses can lower the strength and fatigue life of the spot-welded joints and determine the performance quality of the structure. Originality/value - This paper presents an approach to reduce the high costs and long times of residual stresses measuring tests.

  • 7.
    Afshari, Davood
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Sedighi, Mohammd
    Iran Univ Sci & Technol, Tehran, Iran.
    Barsoum, Zuhier
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Peng, Ru Lin
    Linkoping Tech Univ, Linkoping, Sweden .
    An approach in prediction of failure in resistance spot welded aluminum 6061-T6 under quasi-static tensile test2012In: Proceedings of the Institution of mechanical engineers. Part B, journal of engineering manufacture, ISSN 0954-4054, E-ISSN 2041-2975, Vol. 226, no B6, p. 1026-1032Article in journal (Refereed)
    Abstract [en]

    The aim of this article is to predict the failure load in resistance spot welded aluminum 6061-T6 sheets with 2mm thickness under quasi-static tensile test. Various welding parameters, e. g. welding current, welding time and electrode force are selected to produce welded joints with different quality. The results show that for all the samples in this study only interfacial failure mode was observed in tensile-shear test and no pull-out mode was observed. According to the failure mode, an empirical equation was used for the prediction of failure load based on nugget size and hardness of failure line. Microstructure study has been carried out to investigate microstructural changes in the welded joints. For determination of the minimum hardness, microhardness tests have been carried out to find hardness profiles. The minimum hardness value was observed for a thin layer around the nugget with large and coarse grains. The results show that by using the presented empirical equation, the failure can be predicted with a good agreement only by measuring nugget size.

  • 8.
    Afshari, Davood
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Sedighi, Mohammd
    Iran Univ Sci & Technol, Tehran, Iran.
    Karimi, M. R.
    Barsoum, Zuhier
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis2013In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 22, no 12, p. 3612-3619Article in journal (Refereed)
    Abstract [en]

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  • 9.
    Afshari, Davood
    et al.
    School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran .
    Sedighi, Mohammd
    Iran Univ Sci & Technol, Tehran, Iran.
    Karimi, M. R.
    Barsoum, Zuhier
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Prediction of the nugget size in resistance spot welding with a combination of a finite-element analysis and an artificial neural network2014In: Materiali in tehnologije, ISSN 1580-2949, E-ISSN 1580-3414, Vol. 48, no 1, p. 33-38Article in journal (Refereed)
    Abstract [en]

    The goal of this investigation is to predict the nugget size for a resistance spot weld of thick aluminum 6061-T6 sheets 2 mm. The quality and strength of spot welds determine the integrity of the structure, which depends thoroughly on the nugget size. In this study, the finite-element method and artificial neural network were used to predict the nugget size. Different spot welding parameters such as the welding current and the welding time were selected to be used for a coupled, thermal-electrical-structural finite-element model. In order to validate the numerical results a series of experiments were carried out and the nugget sizes were measured. The results obtained with the finite-element analysis were used to build up a back-propagation, artificial-neural-network model for the nugget-size prediction. The results revealed that a combination of these two developed models can accurately and rapidly predict the nugget size for a resistance spot weld.

  • 10.
    Aghaali, Habib
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Exhaust Heat Utilisation and Losses in Internal Combustion Engines with Focus on the Gas Exchange System2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Exhaust gas energy recovery should be considered in improving fuel economy of internal combustion engines. A large portion of fuel energy is wasted through the exhaust of internal combustion engines. Turbocharger and turbocompound can, however, recover part of this wasted heat. The energy recovery depends on the efficiency and mass flow of the turbine(s) as well as the exhaust gas state and properties such as pressure, temperature and specific heat capacity. The exhaust gas pressure is the principal parameter which is required for the turbine energy recovery, but higher exhaust back-pressures on the engines create higher pumping losses. This is in addition to the heat losses in the turbochargers what makes any measurement and simulation of the engines more complex.

    This thesis consists of two major parts. First of all, the importance of heat losses in turbochargers has been shown theoretically and experimentally with the aim of including heat transfer of the turbochargers in engine simulations. Secondly, different concepts have been examined to extract exhaust heat energy including turbocompounding and divided exhaust period (DEP) with the aim of improved exhaust heat utilisation and reduced pumping losses.

    In the study of heat transfer in turbochargers, the turbocharged engine simulation was improved by including heat transfer of the turbocharger in the simulation. Next, the heat transfer modelling of the turbochargers was improved by introducing a new method for convection heat transfer calculation with the support of on-engine turbocharger measurements under different heat transfer conditions. Then, two different turbocharger performance maps were assessed concerning the heat transfer conditions in the engine simulation. Finally, the temperatures of turbocharger’s surfaces were predicted according to the measurements under different heat transfer conditions and their effects are studied on the turbocharger performance. The present study shows that the heat transfer in the turbochargers is very crucial to take into account in the engine simulations, especially in transient operations.

    In the study of exhaust heat utilisation, important parameters concerning turbine and gas exchange system that can influence the waste heat recovery were discussed. In addition to exhaust back-pressure, turbine speed and turbine efficiency, the role of the air-fuel equivalence ratio was demonstrated in details, because lower air-fuel equivalence ratio in a Diesel engine can provide higher exhaust gas temperature. The results of this study indicate that turbocompound engine efficiency is relatively insensitive to the air-fuel equivalence ratio.

    To decrease the influence of the increased exhaust back-pressure of a turbocompound engine, a new architecture was developed by combining the turbocompound engine with DEP. The aim of this study was to utilise the earlier phase (blowdown) of the exhaust stroke in the turbine(s) and let the later phase (scavenging) of the exhaust stroke bypass the turbine(s). To decouple the blowdown phase from the scavenging phase, the exhaust flow was divided between two different exhaust manifolds with different valve timing.

    According to this study, this combination improves the fuel consumption in low engine speeds and deteriorates it at high engine speeds. This is mainly due to long duration of choked flow in the exhaust valves because this approach is using only one of the two exhaust valves on each cylinder at a time.

    Therefore, the effects of enlarged effective flow areas of the exhaust valves were studied. Two methods were used to enlarge the effective flow area i.e. increasing the diameters of the blowdown and scavenging valves by 4 mm; and modifying the valve lift curves of the exhaust valves to fast opening and closing. Both methods improved BSFC in the same order even though they were different in nature. Fast opening and closing of the exhaust valves required shorter blowdown duration and longer scavenging duration. The modified lift curves provided less pumping losses, less available energy into the turbine and larger amplitude of the pulsating flow through the turbine.

    In order for defining a set of important parameters that should be examined in experimental studies, a sensitivity analysis was performed on the turbocompound DEP engine in terms of break specific fuel consumption to different parameters concerning the gas exchange such as blowdown valve timing, scavenging valve timing, blowdown valve size, scavenging valve size, discharge coefficients of blowdown and scavenging ports, turbine efficiency, turbine size and power transmission efficiency.

    Finally, to overcome the restriction in the effective flow areas of the exhaust valves, DEP was implemented externally on the exhaust manifold instead of engine exhaust valves, which is called externally DEP (ExDEP). This innovative engine architecture, which benefits from supercharging, turbocharging and turbocompounding, has a great fuel-saving potential in almost all load points up to 4%.

  • 11.
    Aghaali, Habib
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    On-Engine Turbocharger Performance Considering Heat Transfer2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Heat transfer plays an important role in affecting an on-engine turbocharger performance. However, it is normally not taken into account for turbocharged engine simulations.

    Generally, an engine simulation based on one-dimensional gas dynamics uses turbocharger performance maps which are measured without quantifying and qualifying the heat transfer, regardless of the fact that they are measured on the hot-flow or cold-flow gas-stand. Since heat transfer situations vary for on-engine turbochargers, the maps have to be shifted and corrected in the 1-D engine simulation, which mass and efficiency multipliers usually do for both the turbine and the compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The heat transfer leads to a deviation from turbocharger performance maps, and increased complexity of the turbocharged engine simulation. Turbochargers operate under different heat transfer situations while they are installed on the engines.

    The main objectives of this thesis are:

    • heat transfer modeling of a turbocharger to quantify and qualify heat transfer mechanisms,
    • improving turbocharged engine simulation by including heat transfer in the turbocharger,
    • assessing the use of two different turbocharger performance maps concerning the heat transfer situation (cold-measured and hot-measured turbocharger performance maps) in the simulation of a measured turbocharged engine,
    • prediction of turbocharger walls’ temperatures and their effects on the turbocharger performance on different heat transfer situations.

    Experimental investigation has been performed on a water-oil-cooled turbocharger, which was installed on a 2-liter GDI engine for different load points of the engine and different heat transfer situations on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings. In addition, several thermocouples have been used on accessible surfaces of the turbocharger to calculate external heat transfers.

    Based on the heat transfer analysis of the turbocharger, the internal heat transfer from the bearing housing to the compressor significantly affects the compressor. However, the internal heat transfer from the turbine to the bearing housing and the external heat transfer of the turbine housing mainly influence the turbine. The external heat transfers of the compressor housing and the bearing housing, and the frictional power do not play an important role in the heat transfer analysis of the turbocharger.

    The effect of the extra cooling fan on the energy balance of the turbocharger is significant. However, the effect of the water is more significant on the external heat transfer of the bearing housing and the internal heat transfer from the bearing housing to the compressor. It seems the radiation shield between the turbine and the compressor has no significant effect on the energy balance of the turbocharger.

    The present study shows that the heat transfer in the turbocharger is very crucial to take into account in the engine simulations. This improves simulation predictability in terms of getting the compressor efficiency multiplier equal to one and turbine efficiency multiplier closer to one, and achieving turbine outlet temperature close to the measurement. Moreover, the compressor outlet temperature becomes equal to the measurement without correcting the map.

    The heat transfer situation during the measurement of the turbocharger performance influences the amount of simulated heat flow to the compressor. The heat transfer situation may be defined by the turbine inlet temperature, oil heat flux and water heat flux. However, the heat transfer situation on the turbine makes a difference on the required turbine efficiency multiplier, rather than the amount of turbine heat flow. It seems the turbine heat flow is a stronger function of available energy into the turbine. Of great interest is the fact that different heat situations on the turbocharger do not considerably influence the pressure ratio of the compressor. The turbine and compressor efficiencies are the most important parameters that are affected by that.

    The component temperatures of the turbocharger influence the working fluid temperatures. Additionally, the turbocharger wall temperatures are predictable from the experiment. This prediction enables increased precision in engine simulations for future works in transient operations.

  • 12.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångstrom, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Demonstration of Air-Fuel Ratio Role in One-Stage Turbocompound Diesel Engines2013In: SAE Technical Papers, 2013, Vol. 11Conference paper (Refereed)
    Abstract [en]

    A large portion of fuel energy is wasted through the exhaust of internal combustion engines. Turbocompound can, however, recover part of this wasted heat. The energy recovery depends on the turbine efficiency and mass flow as well as the exhaust gas state and properties such as pressure, temperature and specific heat capacity.

    The main parameter influencing the turbocompound energy recovery is the exhaust gas pressure which leads to higher pumping loss of the engine and consequently lower engine crankshaft power. Each air-fuel equivalence ratio (λ) gives different engine power, exhaust gas temperature and pressure. Decreasing λ toward 1 in a Diesel engine results in higher exhaust gas temperatures of the engine.  λ can be varied by changing the intake air pressure or the amount of injected fuel which changes the available energy into the turbine. Thus, there is a compromise between gross engine power, created pumping power, recovered turbocompound power and consumed compressor power.

    In this study, the effects of different λ values and exhaust back-pressure have been investigated on the efficiency of a heavy-duty Diesel engine equipped with a single-stage electric turbocompounding. A one-dimensional gas dynamics model of a turbocharged engine was utilized that was validated against measurements at different load points. Two configurations of turbocompound engine were made. In one configuration an electric turbocharger was used and the amount of fuel was varied with constant intake air pressure. In another configuration the turbocharger turbine and compressor were disconnected to be able to control the turbine speed and the compressor speed independently; then the compressor pressure ratio was varied with constant engine fuelling and the exhaust back-pressure was optimized for each compressor pressure ratio.

    At each constant turbine efficiency there is a linear relation between the optimum exhaust back-pressure and ideally expanded cylinder pressure until bottom dead center with closed exhaust valves. There is an optimum λ for the turbocharged engine with regard to the fuel consumption. In the turbocompound engine, this will be moved to a richer λ that gives the best total specific fuel consumption; however, the results of this study indicates that turbocompound engine efficiency is relatively insensitive to the air-fuel ratio.

  • 13.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Effects of Effective Flow Areas of Exhaust Valves on a Turbocompound Diesel Engine Combined With Divided Exhaust Period2014In: Proceedings from the FISITA 2014 World Automotive Congress, 2014Conference paper (Refereed)
    Abstract [en]

    Research and /or Engineering Questions/Objective: Exhaust gas energy recovery in internal combustion engines is one of the key challenges in the future developments. The objective of this study is to reveal the fuel-saving potential of a turbocompound Diesel engine combined with divided exhaust period (DEP). The exhaust flow is provided for two different manifolds via separate valves, blowdown and scavenging, at different timings. The main challenge in this combination is choked flow through the exhaust valves due to the restricted effective flow areas. Therefore, the effects of enlarged effective flow areas of the exhaust valves are studied.

    Methodology: A commercial 1D gas dynamics code, GT-POWER, was used to simulate a turbocharged Diesel engine which was validated against measurements. Then the turbocharged engine model was modified to a turbocompound engine with DEP. Using statistical analysis in the simulation (design of experiment), the performance of this engine was studied at different sizes, lift curves and timings of the exhaust valves and turbine swallowing capacity.

    Results: In the paper the effects of the effective flow areas of the exhaust valves are presented on the break specific fuel consumption, pumping mean effective pressure and the turbine energy recovery by increasing the valve size and modifying valve lift curve to fast opening and closing. This has been done in a low engine speed and full load. The main finding is that the flow characteristics of the exhaust valves in the turbocompound DEP engine are very important for gaining the full efficiency benefit of the DEP concept.  The turbocompound DEP engine with modified valve lift shape of the exhaust valves could improve the overall brake specific fuel consumption by 3.44% in which 0.64% of the improvement is due to the valve lift curve. Modified valve lift curves contribute mainly in decreasing the period of choked flow through the exhaust valves.

    Limitations of this study: The simulations were not validated against measurements; however, the mechanical and geometrical limitations were tried to keep realistic when manipulating the valve flow area events.

    What does the paper offer that is new in the field in comparison to other works of the author: In addition to the novelty of the engine architecture that combines turbocompound with DEP, the statistical analysis and comparison presented in this paper is new especially with demonstrating the importance of crank angle coupled flow characteristics of the valves.

    Conclusion: To achieve full fuel-saving potential of turbocompound DEP engines, the flow characteristics of the exhaust valves must be considered. The effective flow areas of the exhaust valves play important roles in the choked flow through the valves, the pumping work and the brake specific fuel consumption of the engine.

  • 14.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Externally divided exhaust period on a turbocompound engine for fuel-saving2014Conference paper (Other academic)
    Abstract [en]

    To improve exhaust heat utilization of a turbocharged engine, divided exhaust period (DEP) and turbocompound are integrated. The DEP concept decreases pumping loss created by the turbocompound. In the DEP concept the exhaust flow is divided between two different exhaust manifolds, blowdown and scavenging. One of the two exhaust valves on each engine cylinder is opened to the blowdown manifold at the first phase of exhaust stroke and the other valve is opened to the scavenging manifold at the later phase of exhaust stroke. This leads to lower exhaust back pressure and pumping loss. The combination of turbocompound engine with DEP has been examined previously and the result showed that this combination reduces the fuel consumption in low engine speeds and deteriorates it in high engine speeds. The main restriction of this combination was the low effective flow areas of the exhaust valves at high engine speeds.

    To overcome this restriction and increase the effective flow areas of the exhaust valves, DEP is employed externally on the exhaust manifold instead of engine exhaust valves. In externally DEP (ExDEP), both exhaust valves will be opened and closed similar to the corresponding turbocharged engine and the exhaust flow is divided by flow splits on the exhaust manifold. Two valves on the outlet ports of each flow split are added. One of them is a non-return valve (check valve) and the other one is synchronized with the cam shaft.

    In this study, the fuel-saving potential of ExDEP is analysed on the turbocompound engine at different engine speeds and loads and compared with the corresponding turbocharged engine, turbocompound engine and turbocompound DEP engine equipped. The results show that ExDEP has a great fuel-saving potential in almost all load points.

    ExDEP concept, itself, is a novel concept that there is no available literature about it. Moreover, combination of this new gas exchange system with turbocompound engines is an innovative extension of combined turbocompound DEP engines.

  • 15.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Improving Turbocharged Engine Simulation by Including Heat Transfer in the Turbocharger2012In: 2012 SAE International, SAE international , 2012Conference paper (Refereed)
    Abstract [en]

    Engine simulation based on one-dimensional gas dynamics is well suited for integration of all aspects arising in engine and power-train developments. Commonly used turbocharger performance maps in engine simulation are measured in non-pulsating flow and without taking into account the heat transfer. Since on-engine turbochargers are exposed to pulsating flow and varying heat transfer situations, the maps in the engine simulation, i.e. GT-POWER, have to be shifted and corrected which are usually done by mass and efficiency multipliers for both turbine and compressor. The multipliers change the maps and are often different for every load point. Particularly, the efficiency multiplier is different for every heat transfer situation on the turbocharger. The aim of this paper is to include the heat transfer of the turbocharger in the engine simulation and consequently to reduce the use of efficiency multiplier for both the turbine and compressor. A set of experiment has been designed and performed on a water-oil-cooled turbocharger, which was installed on a 2 liter GDI engine with variable valve timing, for different load points of the engine and different conditions of heat transfer in the turbocharger. The experiments were the base to simulate heat transfer on the turbocharger, by adding a heat sink before the turbine and a heat source after the compressor. The efficiency multiplier of the turbine cannot compensate for all heat transfer in the turbine, so it is needed to put out heat from the turbine in addition to the using of efficiency multiplier. Results of this study show that including heat transfer of turbocharger in engine simulation enables to decrease the use of turbine efficiency multiplier and eliminate the use of compressor efficiency multiplier to correctly calculate the measured gas temperatures after turbine and compressor.

  • 16.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Performance Sensitivity to Exhaust Valves and Turbine Parameters on a Turbocompound Engine with Divided Exhaust Period2014In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 7, no 4, p. 1722-1733Article in journal (Refereed)
    Abstract [en]

    Turbocompound can utilize part of the exhaust energy on internal combustion engines; however, it increases exhaust back pressure, and pumping loss.  To avoid such drawbacks, divided exhaust period (DEP) technology is combined with the turbocompound engine. In the DEP concept the exhaust flow is divided between two different exhaust manifolds, blowdown and scavenging, with different valve timings. This leads to lower exhaust back pressure and improves engine performance.

    Combining turbocompound engine with DEP has been theoretically investigated previously and shown that this reduces the fuel consumption and there is a compromise between the turbine energy recovery and the pumping work in the engine optimization. However, the sensitivity of the engine performance has not been investigated for all relevant parameters. The main aim of this study is to analyze the sensitivity of this engine architecture in terms of break specific fuel consumption to different parameters concerning the gas exchange such as blowdown valve timing, scavenging valve timing, blowdown valve size, scavenging valve size, discharge coefficients of blowdown and scavenging ports, turbine efficiency, turbine size and power transmission efficiency. This study presents the sensitivity analysis of the turbocompound DEP engine to these parameters and defines a set of important parameters that should be examined in experimental studies.

  • 17.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Temperature Estimation of Turbocharger Working Fluids and Walls under Different Engine Loads and Heat Transfer Conditions2013In: SAE Technical Papers, 2013Conference paper (Refereed)
    Abstract [en]

    Turbocharger performance maps, which are used in engine simulations, are usually measured on a gas-stand where the temperatures distributions on the turbocharger walls are entirely different from that under real engine operation. This should be taken into account in the simulation of a turbocharged engine. Dissimilar wall temperatures of turbochargers give different air temperature after the compressor and different exhaust gas temperature after the turbine at a same load point. The efficiencies are consequently affected. This can lead to deviations between the simulated and measured outlet temperatures of the turbocharger turbine and compressor. This deviation is larger during a transient load step because the temperatures of turbocharger walls change slowly due to the thermal inertia. Therefore, it is important to predict the temperatures of turbocharger walls and the outlet temperatures of the turbocharger working fluids in a turbocharged engine simulation.

    In the work described in this paper, a water-oil-cooled turbocharger was extensively instrumented with several thermocouples on reachable walls. The turbocharger was installed on a 2-liter gasoline engine that was run under different loads and different heat transfer conditions on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings. The turbine inlet temperature varied between 550 and 850 °C at different engine loads.

    The results of this study show that the temperatures of turbocharger walls are predictable from the experiment. They are dependent on the load point and the heat transfer condition of the turbocharger. The heat transfer condition of an on-engine turbocharger could be defined by the turbine inlet temperature, ambient temperature, oil heat flux, water heat flux and the velocity of the air around the turbocharger. Thus, defining the heat transfer condition and rotational speed of the turbocharger provides temperatures predictions of the turbocharger walls and the working fluids. This prediction enables increased precision in engine simulation for future work in transient operation.

  • 18.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    The Exhaust Energy Utilization of a Turbocompound Engine Combined with Divided Exhaust Period2014Conference paper (Refereed)
    Abstract [en]

    To decrease the influence of the increased exhaust pressure of a turbocompound engine, a new architecture is developed by combining the turbocompound engine with divided exhaust period (DEP). The aim of this study is to utilize the earlier stage (blowdown) of the exhaust stroke in the turbine(s) and let the later stage (scavenging) of the exhaust stroke bypass the turbine(s). To decouple the blowdown phase from the scavenging phase, the exhaust flow is divided between two different exhaust manifolds with different valve timing. A variable valve train system is assumed to enable optimization at different load points. The fuel-saving potential of this architecture have been theoretically investigated by examining different parameters such as turbine flow capacity, blowdown valve timing and scavenging valve timing. Many combinations of these parameters are considered in the optimization of the engine for different engine loads and speeds.

    This architecture produces less negative pumping work for the same engine load point due to lower exhaust back pressure; however, the exhaust mass flow into the turbine(s) is decreased. Therefore, there is a compromise between the turbine energy recovery and the pumping work. According to this study, this combination shows fuel-saving potential in low engine speeds and limitations at high engine speeds. This is mainly due to the choked flow in the exhaust valves because this approach is using only one of the two exhaust valves at a time. To reveal the full potential of this approach, increasing the effective flow area of the valves should be studied.

  • 19.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
    Turbocharged SI-Engine Simulation with Cold and Hot-Measured Turbocharger Performance Maps2012In: Proceedings of ASME Turbo Expo 2012, Vol 5, ASME Press, 2012, p. 671-679Conference paper (Refereed)
    Abstract [en]

    Heat transfer within the turbocharger is an issue in engine simulation based on zero and one-dimensional gas dynamics. Turbocharged engine simulation is often done without taking into account the heat transfer in the turbocharger. In the simulation, using multipliers is the common way of adjusting turbocharger speed and parameters downstream of the compressor and upstream of the turbine. However, they do not represent the physical reality. The multipliers change the maps and need often to be different for different load points. The aim of this paper is to simulate a turbocharged engine and also consider heat transfer in the turbocharger. To be able to consider heat transfer in the turbine and compressor, heat is transferred from the turbine volute and into the compressor scroll. Additionally, the engine simulation was done by using two different turbocharger performance maps of a turbocharger measured under cold and hot conditions. The turbine inlet temperatures were 100 and 600°C, respectively. The turbocharged engine experiment was performed on a water-oil-cooled turbocharger (closed waste-gate), which was installed on a 2-liter gasoline direct-injected engine with variable valve timing, for different load points of the engine. In the work described in this paper, the difference between cold and hot-measured turbocharger performance maps is discussed and the quantified heat transfers from the turbine and to/from the compressor are interpreted and related to the maps.

  • 20.
    Aghaali, Habib
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Ångström, Hans-Erik
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Serrano, Jose R
    Universitat Politècnica de València.
    Evaluation of different heat transfer conditions on an automotive turbocharger2014In: International Journal of Engine Research, ISSN 1468-0874, E-ISSN 2041-3149, Vol. 16, no 2, p. 137-151Article in journal (Refereed)
    Abstract [en]

    This paper presents a combination of theoretical and experimental investigations for determining the main heat fluxes within a turbocharger. These investigations consider several engine speeds and loads as well as different methods of conduction, convection, and radiation heat transfer on the turbocharger. A one-dimensional heat transfer model of the turbocharger has been developed in combination with simulation of a turbocharged engine that includes the heat transfer of the turbocharger. Both the heat transfer model and the simulation were validated against experimental measurements. Various methods were compared for calculating heat transfer from the external surfaces of the turbocharger, and one new method was suggested.

    The effects of different heat transfer conditions were studied on the heat fluxes of the turbocharger using experimental techniques. The different heat transfer conditions on the turbocharger created dissimilar temperature gradients across the turbocharger. The results show that changing the convection heat transfer condition around the turbocharger affects the heat fluxes more noticeably than changing the radiation and conduction heat transfer conditions. Moreover, the internal heat transfers from the turbine to the bearing housing and from the bearing housing to the compressor are significant, but there is an order of magnitude difference between these heat transfer rates.

  • 21.
    Aishwar, Ravichandran
    KTH, School of Engineering Sciences (SCI).
    Aerodynamics of Bird Flight2014Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    It is the objective of this thesis project to understand the physics behind the different modes of bird flight and to do numerical two dimensional simulations of pure plunging, pure pitching and combined pitch-plunging motion of an aerofoil. First, the different physical models used to understand the generation of thrust are explained. Then the numerical model used for the simulation is explained briefly. Then the results and analysis of the numerical simulations are presented.

  • 22. Alam, M M
    et al.
    Barsoum, Zuheir
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Jonsen, P
    Kaplan, A F H
    Haggblad, H A
    Influence of defects on fatigue crack propagation in laser hybrid welded eccentric fillet joint2011In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 78, no 10, p. 2246-2258Article in journal (Refereed)
    Abstract [en]

    Fatigue cracking of laser hybrid welded eccentric fillet joints has been studied for stainless steel. Two-dimensional linear elastic fracture mechanics analysis was carried out for this joint geometry for four point bending load. The numerical simulations explain for the experimental observations why the crack propagates from the lower weld toe and why the crack gradually bends towards the root. Lack of fusion turned out to be uncritical for the initiation of cracks due to its compressive stress conditions. The linear elastic fracture mechanics analysis has demonstrated in good qualitative agreement with fatigue test results that lack of fusion slightly (<10%) reduces the fatigue life by accelerating the crack propagation. For the geometrical conditions studied here improved understanding of the crack propagation was obtained and in turn illustrated. The elaborated design curves turned out to be above the standard recommendations.

  • 23.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, HåkanKTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.del Re, LuigiJohannes Kepler University.
    Identification for Automotive Systems2012Collection (editor) (Refereed)
  • 24.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    del Re, Luigi
    Johannes Kepler University.
    System Identification for Automotive Systems: Opportunities and Challenges2012In: Identification for Automotive Systems / [ed] Daniel Alberer, Håkan Hjalmarsson, Luigi del Re, Springer London, 2012, p. 1-10Chapter in book (Refereed)
    Abstract [en]

    Without control many essential targets of the automotive industry could not be achieved. As control relies directly or indirectly on models and model quality directly influences the control performance, especially in feedforward structures as widely used in the automotive world, good models are needed. Good first principle models would be the first choice, and their determination is frequently difficult or even impossible. Against this background methods and tools developed by the system identification community could be used to obtain fast and reliably models, but a large gap seems to exist: neither these methods are sufficiently well known in the automotive community, nor enough attention is paid by the system identification community to the needs of the automotive industry. This introduction summarizes the state of the art and highlights possible critical issues for a future cooperation as they arose from an ACCM Workshop on Identification for Automotive Systems recently held in Linz, Austria.

  • 25. Albinsson, A.
    et al.
    Bruzelius, F.
    Jacobson, B.
    Gustafsson, T.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Volvo Cars, Sweden.
    Identification of tyre characteristics using active force excitation2016In: The Dynamics of Vehicles on Roads and Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, CRC Press, 2016, p. 501-510Conference paper (Refereed)
    Abstract [en]

    Knowledge of the maximum tyre-road friction coefficient can improve active safety systems by defining actuator boundaries and adaptable intervention thresholds. Estimation of the coefficient of friction based on tyre response measurements requires large level of force excitation. Under normal driving conditions, manoeuvres with large tyre utilizations are rare. This study investigates a method where wheel torques with opposite signs are applied to the front and rear axle simultaneously. This procedure allows for an intervention with large tyre excitations without disturbing the motion of the vehicle. The intervention is evaluated in simulations and experiments. Further, a method is proposed which does not require measurement of the vehicle longitudinal velocity. The results show that it is possible to estimate the current friction coefficient with the proposed method, although the assumption made in the proposed method makes the friction estimate sensitive to measurement noise on the wheel speed signal.

  • 26. Albinsson, Anton
    et al.
    Bruzelius, Fredrik
    Pettersson, Pierre
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Volvo Car Corporation, Sweden.
    Jacobson, Bengt
    Estimation of the inertial parameters of vehicles with electric propulsion2016In: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering, ISSN 0954-4070, E-ISSN 2041-2991, Vol. 230, no 9, p. 1155-1172Article in journal (Refereed)
    Abstract [en]

    More accurate information about the basic vehicle parameters can improve the dynamic control functions of a vehicle. Methods for online estimation of the mass, the rolling resistance, the aerodynamic drag coefficient, the yaw inertia and the longitudinal position of the centre of gravity of an electric hybrid vehicle is therefore proposed. The estimators use the standard vehicle sensor set and the estimate of the electric motor torque. No additional sensors are hence required and no assumptions are made regarding the tyre or the vehicle characteristics. Consequently, all information about the vehicle is available to the estimator. The estimators are evaluated using both simulations and experiments. Estimations of the mass, the rolling resistance and the aerodynamic drag coefficient are based on a recursive least-squares method with multiple forgetting factors. The mass estimate converged to within 3% of the measured vehicle mass for the test cases with sufficient excitation that were evaluated. Two methods to estimate the longitudinal position of the centre of gravity and the yaw inertia are also proposed. The first method is based on the equations of motion and was found to be sensitive to the measurement and parameter errors. The second method is based on the estimated mass and seat-belt indicators. This estimator is more robust and reduces the estimation error in comparison with that obtained by assuming static parameters. The results show that the proposed method improves the estimations of the inertial parameters. Hence, it enables online non-linear tyre force estimators and tyre-model-based tyre-road friction estimators to be used in production vehicles.

  • 27.
    Allam, Sabry
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Aeroacoustic investigation of diaphragm orifices in ducts2007In: Turkish Acoustical Society - 36th International Congress and Exhibition on Noise Control Engineering, INTER-NOISE 2007 ISTANBUL, 2007, p. 292-301Conference paper (Refereed)
    Abstract [en]

    Diaphragm orifices are used in duct systems to control or measure the flow rate. Such components generate complex flows and aeroacoustic phenomena, e.g., dissipation via forced vortex shedding, sound generation from eddy structures (broadband noise) and non-linear whistling. In this paper the acoustic properties (passive and active) of single and double diaphragm orifices are investigated experimentally for small Mach-numbers and low frequencies (plane waves). Using microphone arrays and wave decomposition the induct sound fields are resolved and used as input to determine the active acoustic 2-port. The work represents one of the first efforts to apply 2-port methods to characterize flow generated noise in-ducts. The motivation of this work is to obtain better understanding for noise from flow singularities in ducts, e.g., in HVAC systems on vehicles, develop and improve prediction methods and produce data for validation of CFD and other models. First the single orifice case is investigated and the 2-port data is obtained. The active (source) strength part represents a dipole type of source for which a scaling law is derived. For the passive part (the scattering matrix) a simple quasi-stationary model is tested and works well up to a few hundred Hz. Secondly the double orifice configuration is investigated and again the 2-port data is measured. To investigate the presence of orifice interaction and non-linear aeroacoustic effects, such as whistling, the double orifice data is reduced to two identical single orifices. The equivalent source data for this reduced case is then compared with the single orifice scaling law. It is found that if the separation is larger than 10 orifice diameters then orifice interaction can be neglected. Non-linear effects and tendencies for whistling were found for separations less than 3-4 duct diameters.

  • 28. Allen, T.
    et al.
    Battley, M.
    Casari, P.
    Kerling, B.
    Stenius, Ivan
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Naval Systems.
    Westlund, Joacim
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Naval Systems.
    Structural responses of high performance sailing yachts to slamming loads2011In: 11th International Conference on Fast Sea Transportation, FAST 2011 - Proceedings, 2011, p. 585-592Conference paper (Refereed)
    Abstract [en]

    Experimental measurements of transient strains, local accelerations and pressure were undertaken on the IMOCA Open 60' class sailing yacht Paprec-Virbac III, and on a replica hull panel section tested in a laboratory slam testing facility. The approximately 1m x 0.7m panel for laboratory testing was manufactured on a mould taken from the plug used for the vessel construction, ensuring that the panel had identical curved geometry to the vessel. The laboratory panel included two stringers as on the same region of the vessel. An instrumentation layout including arrays of resistance strain gauges, accelerometers and a transient pressure transducer was used. Linear displacement transducers were used to measure panel deformations during the laboratory tests. The laboratory testing was undertaken at a range of constant impact velocities from 0.5 to 3m/s using a Servohydraulic Slam Testing System. Sea-trials were undertaken in the Hauraki Gulf, Auckland New Zealand. There was good qualitative agreement between the field and laboratory measurements in regard to timing and relative magnitudes of strains at different positions on the structure. Results demonstrate that the hull structure undergoes very complex transient deformations during the slamming events.

  • 29.
    Amlinger, Hanna
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Reduction of Audible Noise of a Traction Motor at PWM Operation2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    A dominating source for the radiated acoustic noise from a train at low speeds is the traction motor. This noise originates from electromagnetic forces acting on the structure resulting in vibrations on the surface and thus radiated noise. It is often perceived as annoying due to its tonal nature. To achieve a desirable acoustic behavior, and also to meet legal requirements, it is of great importance to thoroughly understand the generation of noise of electromagnetic origin in the motor and also to be able to control it to a low level.

    In this work, experimental tests have been performed on a traction motor operated from pulse width modulated (PWM) converter. A PWM converter outputs a quasi-sinusoidal voltage created from switched voltage pulses of different widths. The resulting main vibrations at PWM operation and their causes have been analyzed. It is concluded that an appropriate selection of the PWM switching frequency, that is the rate at which the voltage is switched, is a powerful tool to influence the noise of electromagnetic origin. Changing the switching frequency shifts the frequencies of the exciting electromagnetic forces. Further experimental investigations show that the trend is that the resulting sound power level decreases with increasing switching frequency and eventually the sound power level reaches an almost constant level. The underlying physical phenomena for the reduced sound power level is different for different frequency ranges. It is proposed that the traction motor, similar to a thin walled cylindrical structure, shows a constant vibration over force response above a certain frequency. This is investigated using numerical simulations of simplified models. Above this certain frequency, where the area of high modal density is dominating, the noise reducing effect of further increasing the switching frequency is limited.

  • 30.
    Amlinger, Hanna
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Lopez Arteaga, Ines
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Leth, Siv
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Impact of PWM switching frequency on the radiated acoustic noise from a traction motor2017In: 2017 20th International Conference on Electrical Machines and Systems, ICEMS 2017, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    The radiated acoustic noise from a traction motor at low speeds is dominated by the noise of electromagnetic origin. For a motor operated from pulse width modulated (PWM) converters, the switching frequency of the converter will have a large impact on the noise. The total harmonic distortion of the motor phase currents and thus also the exciting forces, will decrease with increasing switching frequency. Furthermore, changing the switching frequency will shift the frequencies of the exciting forces, hence have an influence on the coincidence with structural resonances of the motor. Tests have been performed on a traction motor and a decrease in sound pressure level with increasing switching frequency has been quantified and analyzed.

  • 31.
    Amundin, Eskil
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Naval Systems.
    Modeling of fatigue in RORO ships2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The largest modern Pure Car and Truck Carriers (PCTC’s) are typically 230 meters long and have 13 cargo decks. In order to facilitate rapid loading and unloading these ships have been subject to a development of reducing any obstructing structures in the cargo hold, meaning that the transversal shear preventing structures, i.e. the racking bulkheads, has been taken to a minimum. Previous studies have concluded that some points on the racking bulkheads, as a result of the stripped down design, are subject to high stresses resulting from wave induced accelerations of the ship.

    In this M.Sc. Thesis the fatigue life of a corner of a transverse bulkhead opening in a 230 meter long PCTC with a capacity of 7200 cars is calculated with different methods.

    •Fatigue life is calculated from recorded ship motion data with the notch stress method in conjunction with rain flow counting and the cumulative damage principal.

    • Fatigue life is calculated according to (DNV CN. 30.7, 2010), based on a Lloyd’s Register FE model load case.

    • Actual findings on the ship are compared to the calculated results. Due to the lack of inspection data this comparison is not very extensive and only more briefly discussed.

    It is concluded that the fatigue life of the examined point, calculated from recorded motion data is 9.6 years and the fatigue life according to DNV is 8.0 years. It is also found that the fatigue damage is cumulated in almost discrete portions and thus the calculated fatigue life can be inaccurate when a short period of time is evaluated as is done in this thesis.

    A modification to the racking bulkhead with respect to fatigue life is also analyzed and it is concluded that the fatigue life in the examined point could be extended significantly by some simple modifications to the geometry.

  • 32.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Greenhouse gas emissions from rail services: Present and future2010In: Proceedings of Railways and Environment, 2010Conference paper (Refereed)
  • 33.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Stichel, Sebastian
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Casanueva, Carlos
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Rail Systems and Rail Vehicles: Part 2: Rail Vehicles2016 (ed. 1)Book (Other (popular science, discussion, etc.))
    Abstract [en]

    This compendium is mainly intended for MSc education in rail vehicle engineering at KTH Royal Institute of Technology, Stockholm, Sweden. The objective is to give an overview and fundamental knowledge of different rail systems, followed by a more thorough introduction to rail vehicles. In this way most rail aspects are covered. The compendium consists of 20 chapters.

  • 34.
    Andersson, Evert
    et al.
    KTH, Superseded Departments, Vehicle Engineering.
    Haggstrom, J
    Sima, M
    Stichel, Sebastian
    KTH, Superseded Departments, Vehicle Engineering.
    Assessment of train-overturning risk due to strong cross-winds2004In: Proceedings of the Institution of mechanical engineers. Part F, journal of rail and rapid transit, ISSN 0954-4097, E-ISSN 2041-3017, Vol. 218, no 3, p. 213-223Article in journal (Refereed)
    Abstract [en]

    This paper describes the methodology for safety assessment related to the risk of a train overturning in strong cross-winds. As an example, this methodology is applied on the high-speed line Botniabanan being built for a maximum speed of 250 km/h in the northeast coastal region of Sweden. The process starts with a systematic identification of locations along the line having a potential high risk of overturning due to cross-winds. This is followed by a cross-disciplinary study. The first step is to estimate the probabilities of wind velocity and wind directions. The next step is aerodynamic computation of overturning forces and moments acting on relevant types of train. Further, the critical overturning wind velocity is determined by a multi-body simulation technique. Finally, the overturning accident frequency is calculated. The calculated risk is compared with generally accepted risk levels in modern train operation.

  • 35.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Lukaszewicz, Piotr
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Energy Consumption and Related Air Pollution for Scandinavian Electric Passenger Trains2006Report (Other academic)
    Abstract [en]

    Energy consumption of a number of modern Scandinavian electric passenger train operations is studied. The trains are X 2000, Regina, OTU (Øresundstoget), Type 71 “Flytoget”and Type 73 “Signatur”. Energy measurements are made in regular train operations inSweden, Denmark and Norway. For Regina and Flytoget long time series (at least oneyear) are available, while shorter time series are available for the other train types. Energydata for new trains (introduced since 1999) are collected in the years 2002-2005. Energydata from 1994 are used for X 2000 and are corrected for operational conditions of 2004.For comparison, energy data for an older loco-hauled train of 1994 is also used.In the present study energy consumption for propulsion, on-board comfort and catering, aswell as idling outside scheduled service, is determined. The energy consumption includeslosses in the railway’s electrical supply, i.e. the determined amount of energy is as suppliedfrom the public electrical grid.Emissions of air pollutants, due to production of the electric energy used, are alsodetermined, in this case CO2, NOx, HC and CO. Three alternative determinations are made:(1) Pollution from average electric energy on the common Nordic market;(2) Pollution from “Green” electric energy from renewable sources;(3) Marginal contribution for an additional train or passenger, short-term and long-term.The newly introduced EU Emissions Trading Scheme with emission allowances willmost likely limit the long-term emissions independently of the actual amount ofelectric energy used by electric trains.It is shown that the investigated modern passenger train operations of years 2002- 2005 usea quite modest amount of energy, in spite of the higher speeds compared with trains of1994. For comparable operations the energy consumption is reduced by typically 25 – 30 %per seat-km or per passenger-km if compared with the older loco-hauled trains. The reasonsfor the improved energy performance are:(1) Improved aerodynamics compared with older trains (reduced air drag);(2) Regenerative braking (i.e. energy is recovered when braking the train);(3) Lower train mass per seat;(4) Improved energy efficiency in power supply, partly due to more advancedtechnologies of the trains.Energy consumption per passenger-km is very dependent of the actual load factor (i.e. ratiobetween the number of passenger-km and the offered number of seat-km). For longdistance operations load factors are quite high, typically 55 - 60 % in Scandinavia. In thismarket segment energy consumption is determined to around 0.08 kWh per pass-km. Forfast regional services with electric trains, the load factors vary from typically 20 to about40 %, while the energy consumption varies from 0.07 kWh per pass-km (for the highestload factor) to 0.18 kWh/pass-km.However, also in the latter cases the investigated trains are very competitive to other modesof transport with regard to energy consumption and emissions of air pollutants.

  • 36.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Orvnäs, Anneli
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Persson, Rickard
    On the Optimization of a Track-Friendly Bogie for High Speed2009In: 21st International Symposium on Dynamics of Vehicles on Roads and Tracks, IAVSD'09, Stockholm, August 17-21, 2009., 2009Conference paper (Other academic)
    Abstract [en]

    When designing and optimizing a rail vehicle there is a contradiction between, on the one hand, stability on straight track at high speed and, on the other hand, reasonable wheel and rail wear in small- and medium radius curves. Higher speeds require to some extent stiffer wheelset guidance to avoid hunting and ensure stability. However, with stiffer wheelset guidance the risk of increased wheel and rail wear in curves is imminent. In this paper, the process of developing and optimizing a track-friendly bogie is described. A multi-body system (MBS) simulation model was used, taking due consideration to nonlinearities in suspension and wheel-rail contact, as well as realistic flexibilities in the track. Adequate and systematic consideration is taken to a wide range of possible non-linear wheel-rail combinations. Dynamic stability is investigated both on straight track and in wide curves at high speeds. The balance between flange wear and tread wear is studied in order to maximize wheel life between re-profiling operations in the intended average operation. The result is a bogie with relatively soft wheelset guidance allowing passive radial self-steering, which in combination with appropriate yaw damping ensures stability on straight track at higher speeds. The bogie has been subject to both certification testing and long-term service testing in the Gröna Tåget (the Green Train) research and development programme.

  • 37.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Orvnäs, Anneli
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Persson, Rickard
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Radial self-steering bogies - Development, advantages and limitations2007In: ZE Vrail - Glasers Annalen: Zeitschrift fuer das gesamte System Bahn, ISSN 1618-8330, Vol. 131, no Suppl., p. 248-259Article in journal (Refereed)
    Abstract [en]

    Considering the total cost of railway operations, It is important to reduce the deterioration caused to the track by rail vehicles and vice versa. Radial steering running gear, where the wheelsets take up approximate radial positions in curves, is an important mean of reducing rail and wheel wear. They also allow curves to be negotiated at higher lateral acceleration on non-perfect track, without exceeding stipulated limits for lateral track shift forces. In order to run dynamically stable at high speed, the damping of the bogie must be appropriate, in particular the yaw damping between bogies and car body. Since the mid-1970's radial self-steering bogles have been developed and used in about 1 200 passenger rail vehicles in Scandinavia. This development continues and during 2006 a test train with radial self-steering bogies is run in speeds up till 281 km/h as part of the Swedish R&D program "GrönaTå get" (GreenTrain). Although there are limitations in the performance of passively self-steering bogles they are a simple and proven solution. Ultimately, In the future actively controlled radial steering may be considered asan appropriate mean to achieve higher performance and track-friendliness.

  • 38.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Orvnäs, Anneli
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Persson, Rickard
    Radial Self-Steering Bogies: Recent Developments for High Speed2009In: 7th International Conference on Railway Bogies and Running Gears / [ed] István Zobory, 2009, p. 63-72Conference paper (Other academic)
    Abstract [en]

    Considering the total cost of railway operations, it is important to reduce the deterioration caused to the track by rail vehicles and vice versa. Radial steering running gear, where the wheelsets take up approximate radial positions in curves, is an important mean of reducing rail and wheel wear. They also allow curves to be negotiated at higher lateral acceleration on non-perfect track, without exceeding stipulated limits for lateral track shift forces. In order to run dynamically stable at high speed, the damping of the bogie must be appropriate, in particular the yaw damping between bogies and carbody. Radial self-steering bogies are used on more than 1200 rail passenger vehicles in Scandinavia since the early 1980’s. The maximum service speed of these vehicles ranges up to 210 km/h. Ongoing development seems to confirm that the use of such bogies can be extended into the very high-speed area of at least 250 km/h. There has previously been some scepticism on the feasibility of soft wheelset guidance for higher speeds, in particular with respect to running stability. Although there are some limitations in the performance of radial self-steering bogies, this solution is robust and well-proven since about 25 years. The ultimate future may be a mechatronic bogie, where the wheelsets are guided in the most optimal way through controlled and forced radial steering. Such bogies may be justified if performance is out of the possible range of passive self-steering solutions.

  • 39.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles. KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group.
    Stichel, Sebastian
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Gröna Tåget - Green Train - Train for tomorrow's travellers2011In: ZEVrail, ISSN 1618-8330, Vol. 135, p. 140-153Article in journal (Other academic)
    Abstract [en]

    Gröna Tåget (Green Train) is a Swedish research and development programme aiming at defining a concept and developing technology for the next generation high-speed trains, suitable for the Northern European countries. The programme involves almost all major stakeholders in the railway business in Sweden. Main sponsors are Trafikverket (former Banverket) as well as the railway industry and operators (Bombardier, SJ and others). The total budget is around 15 million EUR. The technical coordination is with the Royal Institute of Technology (KTH) in Stockholm. The program started in 2005 and will continue until the end of 2011.

    Gröna Tåget is intended to be a fast, track-friendly, electric tilting train that can not only maintain higher speeds than conventional trains on sections with curves, but special versions could allow 300 km/h or more on future dedicated high-speed lines. Gröna Tåget shall be more attractive and more cost effective both to travellers and to operators than today’s trains. Environmental perfor­mance (energy use per passenger, noise) is expected to be still better than existing trains at lower speed. 

  • 40.
    Andersson, Evert
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.
    Öberg, J.
    Models for infrastructure costs related to the wheel-rail interface2009In: Wheel-Rail Interface Handbook, Woodhead Publishing Limited, 2009, p. 608-629Chapter in book (Refereed)
    Abstract [en]

    A model for determination of costs for track deterioration is presented. In particular, the model is able to discriminate between vehicles with different characteristics operating on the track, as well as incorporating operating data (speed, cant deficiency, etc.) and track geometry. The model is implemented in an Excel™ environment. Its use is exemplified by a Swedish case of mainline passenger and freight traffic. Some results are presented on the influence of vehicle characteristics, track geometry, track lubrication and speed. The model predicts that axle load, radial steering ability, unsprung mass and track lubrication are decisive for track deterioration and its associated costs.

  • 41.
    Andersson, Oscar
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Semere, Daniel
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Melander, Arne
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering. Swerea KIMAB, Sweden.
    Arvidsson, M.
    Lindberg, Bengt
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Digitalization of Process Planning of Spot Welding in Body-in-white2016In: Procedia CIRP, Elsevier, 2016, p. 618-623Conference paper (Refereed)
    Abstract [en]

    Process planning of spot welding for body-in-white automobile structures involves several experimental (physical) welding trials to set the process parameters. These experimental trials are crucial in ensuring the quality and efficiency of the process. However, due to the iterative nature of the work, running several experiments is costly and time consuming prolonging the overall development cost and time significantly. To minimize the cost and time, replacing the physical tests by digital (virtual) tests is an established approach although not often applied for spot welding. However, for a long chain of development process with several iterative loops, this is not a trivial task considering the availability of information and continuity of the work flow. This paper reports the work and results of an industrial case study conducted on spot welding of a body-in-white car pillar in a Swedish auto manufacturer. The aim of the study is to investigate and propose the necessary conditions required to replace a physical test by virtual tests in terms of validity and expedited execution of the process. Information sharing, knowledge reuse and streamlining the work flow have found to be critical condition for valid and rapid virtual tests.

  • 42.
    Andersson, Sören
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Friction and wear simulation of the wheel-rail interface2009In: Wheel-Rail Interface Handbook, Woodhead Publishing Limited, 2009, p. 93-124Chapter in book (Refereed)
    Abstract [en]

    The conditions in wheel rail contacts can be both mild and severe. Predicting the friction and the wear in such contacts is generally thought to be rather difficult and uncertain. This paper, however, addresses these tasks and will outline some possibilities for predicting friction and wear in rolling and sliding contacts as in wheel-rail contacts. In a rolling and sliding contact, the two interacting surfaces characteristically move at different speeds in a tangential direction. The Tribology Group at KTH Machine Design has worked on simulating friction and wear in rolling and sliding contacts for more than 20 years. The modelling principles the group has successfully used are based on (i) the single-point observation method and (ii) treating friction and wear as initial-value processes. Simple examples will be presented, demonstrating how these principles can be used.

  • 43.
    Andreasson, Johan
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    On Generic Road Vehicle Motion Modelling and Control2006Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    With the increased amount of on-board electric power driven by the ongoing hybridization, new ways to realize vehicles are likely to occur. This thesis outlines a future direction of vehicle motion control based on the assumptions that: 1) future vehicle development will face an increased amount of available actuators for vehicle propulsion and control that will open up for an increased variety of possible configurations, 2) the onboard computational power will continue to increase and allow higher demands on active safety and drivability that will require a tighter interaction between sensors and actuators, 3) the trend towards more individualized vehicles on common platforms with shorter time-to-market require design approaches that allow engineering knowledge to be transferred conveniently from one generation to the next.

    A methodology to facilitate the selection of vehicle configurations and the design of the corresponding vehicle motion controllers is presented. This includes a method to classify and map configurations and control strategies onto their possible influence on the vehicle's motion. Further, a structured way of implementing and managing vehicle and subsystem models that are easy to reconfigure and reuse is suggested and realised in the developed VehicleDynamics Library. In addition, generic ways to evaluate vehicle configurations, especially the use of the adhesion potential to identify safety margin and expected limit behaviour are presented.

    Special attention is given to how the characteristics of a vehicle configuration can be expressed so that it can be used in vehicle motion control design. A controller structure that enables a generic approach to this is introduced and within this structure, two methods for control allocation are proposed, via tyre forces and directly. The first method uses a developed mapping of available actuators as constraints onto the achievable tyre forces and inverse tyre models to calculate the actuator inputs. The second method allocates the actuator inputs directly for an adapted problem that is linearized around the current operating point. It is shown that the methods are applicable to a variety of different vehicle configurations without redesign. Therefore, the same controller can manage a variety of vehicle configurations and there is no need to recognize and treat each different situation separately.

    Finally, a road map on how to continue this research towards a possible industry implementation is given. Also suggestions on more detailed improvements for modelling and vehicle motion control are provided.

  • 44.
    Angelis, Stavros
    et al.
    Volvo Car Corporation.
    Tidlund, Matthias
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Leledakis, Alexandros
    Volvo Car Corporation.
    Lidberg, Mathias
    Chalmers university of technology.
    Nybacka, Mikael
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Katzourakis, Diomidis
    Optimal Steering for Double-Lane Change Entry Speed Maximization2014In: Proceedings of ACEV'14 International symposium on advanced vehicle control, 22-26 September 2014,Tokyo, Japan, Tokyo, Japan: Society of Automotive Engineers, 2014Conference paper (Refereed)
    Abstract [en]

    This study introduces a method for estimating the vehicle’s maximum entry speed for an ISO3888 part-2 double-lane change (DLC) test in simulation. Pseudospectral collocation in TOMLAB/ PROPT calculates the optimal steering angle that maximizes the entry speed. The rationale is to estimate the vehicle’s performance in the design phase and adapt the tuning to improve DLC ratings. A two-track vehicle dynamics model (VDM) employing non-linear tires, suspension properties and a simplified Dynamic Stability and Traction Control (DSTC) system was parameterized as a 2011 T5 FWD Volvo S60 using in-field tests and its corresponding kinematics and compliance (K&C) measurements. A sensitivity analysis on the parameters revealed certain trends that influence the entry speed, which can be varied from 69.4 up to 73.3 km/h when adapting certain vehicle features. To evaluate the method, the generated optimal steering control inputs for the simulated S60 were applied on the actual car motivating the further development of the method. 

  • 45. Babicheva, T.
    et al.
    Burghout, Wilco
    KTH. VEDECOM, 77 rue des Chantiers, Versailles, France.
    Andreasson, I.
    Faul, N.
    The matching problem of empty vehicle redistribution in autonomous taxi systems2018In: The 9th International Conference on Ambient Systems, Networks and Technologies (ANT 2018) / The 8th International Conference on Sustainable Energy Information Technology (SEIT-2018) / Affiliated Workshops, Elsevier, 2018, Vol. 130, p. 119-125Conference paper (Refereed)
    Abstract [en]

    This article discusses empty vehicle redistribution algorithms for PRT and autonomous taxi services from a passenger service perspective. In modern literature reactive methods such as nearest neighbours are commonly used. In this article we first formulate the general matching problem on a bipartite graph of available vehicles and stations. In addition, we propose a new index-based proactive redistribution (IBR) algorithm based on predicted near-future demand at stations. Test results of six variations of combined proactive and reactive strategies on a test case in Saclay, France with 20 stations and 100 vehicles are given. The combined Nearest Neighbour / IBR provides a promising solution for both peak and off-peak demand, significantly outperforming all other methods considered, in terms of passenger waiting time (both average and maximum) as well as in terms of station queue lengths.

  • 46.
    Backström, Daniel
    KTH, Superseded Departments, Aeronautical and Vehicle Engineering.
    Modelling the flexural dynamics of sandwich beams using Bernoulli-Euler or Timoshenko theory with frequency dependent parameters2004Licentiate thesis, monograph (Other scientific)
  • 47.
    Backstöm, Daniel
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Nilsson, Anders
    Modeling flexural vibration of a sandwich beam using modified fourth-order theory2006In: Journal of Sandwich Structures and Materials, ISSN 1099-6362, E-ISSN 1530-7972, Vol. 8, no 6, p. 465-476Article in journal (Refereed)
    Abstract [en]

    The purpose of this study is to evaluate the possibility of using modified lower order methods - such as the Bernoulli-Euler or Timoshenko beam theories with frequency dependent parameters - to calculate the response of sandwich beams subject to different end conditions. The models have been verified by measurements on a freely suspended asymmetric sandwich beam with aluminum laminates and a plastic foam core, indicating good agreement.

  • 48.
    Ballard, Claire
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Conceptual lay-out of small launcher2012Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
  • 49.
    Ballard, Claire
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Conceptual lay-out of small launcher2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The objective of this diploma thesis is to perform a conceptual lay-out of a small launcher. Re- quirements have been defined in order to realize this first preliminary study and design of a small launcher. In that frame, a MATLAB code has been written in order to simulate the rocket tra- jectories. An optimization program on launcher staging has been written as well. To validate this code, the VEGA and Ariane 5 launchers have been used. Then from studies on existing launchers, simulations have been performed in order to find an optimum small launcher and later on to design more precisely the small launcher. As a requirement an upper stage has been newly designed for the purpose of the study. At the end, two small launchers have been considered: a three-stage launcher using the Zefiro 23 as a first stage, the Zefiro 9 as a second stage, and an upper stage using a 3kN thrust engine; a two-stage launcher using the Zenit booster engine in the first stage, and an upper stage using a 22kN thrust engine.

  • 50.
    Barchéus, Fredrik
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.), Industrial Work Science.
    Who is responsible?: Communication, coordination and collaboration in the future Air Traffic Management system2007Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    nternational civil aviation has experienced a steady growth in the past decades that is foreseen to continue. To overcome capacity limits of the old Air Traffic Control systems, new technology is currently being developed and introduced. While the current way of conducting air traffic has evolved in a continuous manner, the new technologies are part of a new paradigm that has the potential to completely reform aviation. Under this paradigm, it is envisaged that pilots may engage in surveillance tasks, which poses new demands on coordination between controllers and pilots.

    This thesis describes basic properties of current and new technology and procedures within civil aviation and the relation to distribution of tasks and responsibilities between pilots and controllers. It is recognised that the current distribution is largely based on the development of technological tools. As new technology allows information in the aviation system to be shared to much greater extent than in the present operational environment, it implies that the basis for present task allocation between controllers and pilots may be challenged. For new technology to be viable, appropriate procedures must be developed to assure safety within the air traffic system.

    To gain wide insight into current aviation, a multitude of data-collection methods have been applied including interviews, observations, and simulations. Interviews have been performed with controllers from several European countries. Observations have been performed in operational Air Traffic Control as well as operational flight. Observations have also been performed in simulations where some applications of the new technology have been investigated. Questionnaires were distributed to both pilots and controllers in a real-time simulation investigating Free Flight issues.

    Results show that operational activity is characterised by a large degree of flexibility. In some applications of new technology, certain tools and procedures have been identified that have been regarded inflexible. It is emphasised that continued development should be performed in international cooperation and introduced into operation gradually to minimise shortfalls of training.

1234567 1 - 50 of 942
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf