Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chotteau, Veronique
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Jiang, Yun
    Biovitrum/SOBI, Sweden.
    westin, Jeanette
    Biovitrum/SOBI, Sweden.
    Dahlenborg, K
    Biovitrum/SOBI, Sweden.
    Sjöblom-Hallén, A
    Biovitrum/SOBI, Sweden.
    Svensson, Erik
    Biovitrum/SOBI, Sweden.
    Öberg, Mikael
    Biovitrum/SOBI, Sweden.
    Development of a fed-batch process for the production of a recombinant protein X in CHO-GS system: Case study from the cell to reactor process ready for pilot scale cultivation2010In: Cells and Culture: Proceedings of the 20th ESACT / [ed] Noll T, Springer Science+Business Media B.V., 2010, p. 723-725Conference paper (Other academic)
    Abstract [en]

    A new cell line was created using CHO-GS system. The most promising clones were adapted to different base cultivation media leading to the selection of one medium. The fed-batch process development was performed in spinner, shake flask and bioreactor scale. It included the selection of a feed medium, the choice of the feed strategy and the optimisation of the glucose feeding. The process was then simplified by using a single feed including the feed medium and the glucose feed. Finally up-scaling parameters like aeration and CO2 stripping were studied in 3 L and 15 L bioreactors in preparation for pilot scale operation. This process proved to be robust, reproducible and suitable for large and commercial scale operation.

  • 2.
    Chotteau, Veronique
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology (closed 20130101).
    Lindqvist, Anna
    KTH, School of Biotechnology (BIO), Bioprocess Technology (closed 20130101).
    Study of the effect of high pH and alkali addition in a cultivation of Chinese Hamster Ovary cell2012In: Proceedings of the 21st Annual Meeting of the European Society for Animal Cell Technology (ESACT) / [ed] Jenkins, Nigel; Barron, Niall; Alves, Paula, Springer Science+Business Media B.V., 2012, p. 323-326Conference paper (Refereed)
    Abstract [en]

    This work aimed at studying the impact of alkali addition in a Chinese Hamster Ovary cell culture. Two phenomena were studied, the kinetic rate of direct cell death in presence of high pH and the effect of transitory single contact of high pH on cell viability and growth. Contact with pH 11 or 10 did not provoke immediate cell lysis. The cells survived several minutes to such conditions. Contact with pH 11 during 2 minutes, with pH 10 during 5 minutes, with pH 9 during 5 minutes or 10 minutes did not affect the viability. In these conditions, the growth was not affected except after 5 minutes contact at pH 10 or 10 minutes contact at pH 9 for which the growth was slowed down the first day only. As expected, NaOH addition affected the cells more than Na2CO3 addition. This was due to a higher pH but could be even observed at the same pH (10).

  • 3.
    Chotteau, Veronique
    et al.
    KTH, School of Biotechnology (BIO).
    Wåhlgren, Caroline
    Biovitrum/SOBI, Sweden.
    Jiang, Yun
    Biovitrum/SOBI, Sweden.
    Svensson, Erik
    Biovitrum/SOBI, Sweden.
    Process for cultivating animal cells comprising the feeding of plant-derived peptones2005Patent (Other (popular science, discussion, etc.))
    Abstract [en]

    A process for cultivating animal cells producing complex proteins, wherein one plant-derived peptone or a combination of plant-derived peptones is fed to the cell culture, as well as a method for reducing the toxic effect of over-feeding amino acids during a fed-batch process for cultivating animal cells producing complex proteins.

  • 4.
    Chotteau, Veronique
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Wåhlgren, Caroline
    Biovitrum/SOBI, Sweden.
    Pettersson, Helena
    Biovitrum/SOBI, Sweden.
    Effect of Peptones and Study of Feeding Strategies in a CHO Based Fed-batch Process for the Production of a Human Monoclonal Antibody2007In: Cell Technology for Cell Products: Proceedings of the 19th ESACT Meeting, Harrogate, UK, June 5-8, 2005 / [ed] Smith R, Dordrecht, The Netherlands: Springer Netherlands, 2007, p. 371-374Conference paper (Other academic)
    Abstract [en]

    Eight commercial peptones, derived from plants, were studied for their ability of improving the cell growth and the productivity of a CHO cell line producing a human monoclonal antibody. They were also compared to yeast, lactalbumin and meat derived peptones. Seven plant peptones were selected and further studied in combination by Design of Experiment. The best three peptones were then tested in combinations in fed-batch cultivation. The fed-batch process was based on low concentrations of glucose and glutamine with feeding of amino acids, peptones and feed medium including vitamins, metal traces and biosynthesis precursors. This process was based on Biovitrum protein-free proprietary medium for the base medium and the feeding medium. Different feeding strategies, different peptone combinations and phosphate feeding were studied for their ability to improve the cell density, the cell specific productivity and the cultivation longevity

  • 5.
    Clincke, Marie-Francoise
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Mölleryd, Carin
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Zhang, Ye
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Lindskog, Eva
    GE Healthcare, Uppsala, Sweden.
    Walsh, Kieron
    GE Healthcare, Westborough, MA, USA.
    Chotteau, Veronique
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor™2011In: BMC Proceedings, 2011, Volume 5, Supplement 8, P105, BioMed Central, 2011, p. 105-Conference paper (Refereed)
    Abstract [en]

    Major advantages of perfusion are high cell numbers and high total production in a relatively small size bioreactor. Moreover, perfusion is optimal when the product of interest is unstable or if the product yield is low. On the other hand, disadvantages are for example technical challenges originating from non-robust cell separation devices as well as sterility concerns from the more complex set-up needed.

    In the present work, the use of a WAVE Bioreactor™ system 20/50 in perfusion mode with10 L disposable Cellbag™ bioreactors customized with two dip tubes in combination with disposable hollow fiber filters as external cell separating devices were investigated. A comparison between Alternating Tangential Flow (ATF) and Tangential Flow Filtration (TFF) was performed using a recombinant CHO cell line producing a monoclonal antibody (mAb) as a model system. 

  • 6.
    Garousi, Javad
    et al.
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Lindbo, Sarah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Borin, Jesper
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    von Witting, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Vorobyeva, Anzhelika
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Oroujeni, Maryam
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Mitran, Bogdan
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Buijs, Jos
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 37-48Article in journal (Refereed)
    Abstract [en]

    ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)(2)- (DiADAPT6L2), and -(SSSG)(3)- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with In-111 and I-125, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.

  • 7.
    Jiang, Yun
    et al.
    Biovitrum/SOBI, Sweden.
    Svensson, Erik
    Biovitrum/SOBI, Sweden.
    Chotteau, Veronique
    Improvement of a CHO Fed-Batch Process by Fortifying with Plant Peptones2010In: Cells and Culture: ESACT Proceedings, 2010, Volume 4, Part 3 / [ed] Noll T, Springer, 2010, p. 281-284Conference paper (Other academic)
    Abstract [en]

    A serum-free fed-batch process was developed for production of a human monoclonal antibody in Chinese hamster ovary (CHO) cells based on Biovitrum’s proprietary low protein serum-free medium without animal derived components (BVT4). The cells were fed with glucose, glutamine and Biovitrum’s proprietary low protein serum-free feed medium without animal derived components enriched with amino acids, vitamins, metal traces, peptones, and biosynthesis precursors. To improve the performance of the fed-batch process, we developed the use of plant peptones by studying the dose and timing of the peptone feeding. Different doses of peptone cocktail and amino acid cocktail, as well as different combinations of pep- tone and amino acid cocktails were first screened in 50 ml filter tubes on an AgCell shaker table. The best combinations were then assessed in spinner and 3 L bioreactor cultures. To reinforce our findings, the antibody-producing CHO cells were adapted to a disclosed serum-free medium DMEM/F12 and the beneficial effects of pep- tones were confirmed in a fed-batch process based on the DMEM/F12 serum-free medium.

  • 8.
    Kanje, Sara
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Venskutonytė, Raminta
    Lund University.
    Scheffel, Julia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Nilvebrant, Johan
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.
    Lindkvist-Petersson, Karin
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Centres, Centre for Bioprocess Technology, CBioPT. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Protein engineering allows for mild affinity-based elution of therapeutic antibodies2018In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, no 18, p. 3427-3438Article in journal (Refereed)
    Abstract [en]

    Presented here is an engineered protein domain, based on Protein A, that displays a calcium-dependent binding to antibodies. This protein, ZCa, is shown to efficiently function as an affinity ligand for mild purification of antibodies through elution with ethylenediaminetetraacetic acid. Antibodies are commonly used tools in the area of biological sciences and as therapeutics, and the most commonly used approach for antibody purification is based on Protein A using acidic elution. Although this affinity-based method is robust and efficient, the requirement for low pH elution can be detrimental to the protein being purified. By introducing a calcium-binding loop in the Protein A-derived Z domain, it has been re-engineered to provide efficient antibody purification under mild conditions. Through comprehensive analyses of the domain as well as the ZCa–Fc complex, the features of this domain are well understood. This novel protein domain provides a very valuable tool for effective and gentle antibody and Fc-fusion protein purification

  • 9.
    Langer, Krzysztof
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jönsson, Håkan
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rapid production and recovery of cell spheroids by automated droplet microfluidics2019Manuscript (preprint) (Other academic)
    Abstract [en]

    Droplet microfluidics enables high throughput cell processing, analysis and screening by miniaturizing the reaction vessels to nano- or pico-liter water-in oil droplets, but like many other microfluidic formats, droplet microfluidics have not been interfaced with or automated by laboratory robotics. Here we demonstrate automation of droplet microfluidics based on an inexpensive liquid handling robot for the automated production of human scaffold-free cell spheroids, using pipette actuation and interfacing the pipetting tip with a droplet generating microfluidic chip. In this chip we produce highly mono-disperse 290μm droplets with diameter CV of 1.7%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard formats at a throughput of 85000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high after recovery only decreased by 4% starting from 96% after 16 hours incubation in nanoliter droplets. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single cell cultures, but assembly methods for spheroids, e.g. hanging drop micro-plates, has had limited throughput. The increased throughput and decreased cost of our method enables spheroid production at the scale needed for lead discovery drug screening and approaches the cost where these micro tissues could be used as building blocks for organ scale regenerative medicine.

  • 10.
    Langer, Krzysztof
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Jönsson, Håkan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Rapid production and recovery of cell spheroids by automated droplet microfluidics2019In: bioRxivArticle in journal (Refereed)
    Abstract [en]

    Droplet microfluidics enables high throughput cell processing, analysis and screening by miniaturizing the reaction vessels to nano- or pico-liter water-in oil droplets, but like many other microfluidic formats, droplet microfluidics have not been interfaced with or automated by laboratory robotics. Here we demonstrate automation of droplet microfluidics based on an inexpensive liquid handling robot for the automated production of human scaffold-free cell spheroids, using pipette actuation and interfacing the pipetting tip with a droplet generating microfluidic chip. In this chip we produce highly mono-disperse 290μm droplets with diameter CV of 1.7%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard formats at a throughput of 85000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high after recovery only decreased by 4% starting from 96% after 16 hours incubation in nanoliter droplets. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single cell cultures, but assembly methods for spheroids, e.g. hanging drop micro-plates, has had limited throughput. The increased throughput and decreased cost of our method enables spheroid production at the scale needed for lead discovery drug screening and approaches the cost where these micro tissues could be used as building blocks for organ scale regenerative medicine.

  • 11.
    Langer, Krzysztof
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jönsson, Håkan
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Novo Nordisk Fdn Ctr Biosustainabil, Stockholm, Sweden.
    Rapid Production and Recovery of Cell Spheroids by Automated Droplet Microfluidics2019In: SLAS TECHNOLOGY, ISSN 2472-6303, article id UNSP 2472630319877376Article in journal (Refereed)
    Abstract [en]

    The future of the life sciences is linked to automation and microfluidics. As robots start working side by side with scientists, robotic automation of microfluidics in general, and droplet microfluidics in particular, will significantly extend and accelerate the life sciences. Here, we demonstrate the automation of droplet microfluidics using an inexpensive liquid-handling robot to produce human scaffold-free cell spheroids at high throughput. We use pipette actuation and interface the pipetting tip with a droplet-generating microfluidic device. In this device, we produce highly monodisperse droplets with a diameter coefficient of variation (CV) lower than 2%. By encapsulating cells in these droplets, we produce cell spheroids in droplets and recover them to standard labware containers at a throughput of 85,000 spheroids per microfluidic circuit per hour. The viability of the cells in spheroids remains high throughout the process and decreases by >10% (depending on the cell line used) after a 16 h incubation period in nanoliter droplets and automated recovery. Scaffold-free cell spheroids and 3D tissue constructs recapitulate many aspects of functional human tissue more accurately than 2D or single-cell cultures, but assembly methods for spheroids (e.g., hanging drop microplates) have limited throughput. The increased throughput and decreased cost of our method enable spheroid production at the scale needed for lead discovery drug screening, and approach the cost at which these microtissues could be used as building blocks for organ-scale regenerative medicine.

  • 12.
    Li, Jing
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Wang, Damao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Xing, Xiaohui
    Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
    Cheng, Ting-Jen Rachel
    Genomics Research Centre, Academia Sinica, Sec. 2, 128 Academia Road, Nankang, Taipei 115, Taiwan.
    Liang, Pi-Hui
    School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
    Park, Jeong Hill
    College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
    Hsieh, Yves S. Y.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Structural analysis and biological activity of cell wall polysaccharides extracted from Panax ginseng marc2019In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 135, p. 29-37Article in journal (Refereed)
    Abstract [en]

    Ginseng marc is a major by-product of the ginseng industry currently used as animal feed or fertilizer. This fibrous, insoluble waste stream is rich in cell wall polysaccharides and therefore a potential source of ingredients for functional food with health-promoting properties. However, the extraction of these polysaccharides has proved problematic and their exact composition remains unknown. Here we have analysed the composition, structure and biological activity of polysaccharides from ginseng root, stem and leaf marc fractionated using a chelator and alkali solutions. The pectic fraction has been extracted from root marc in high abundance and can activate the production of interleukine-1α and the hematopoietic growth factor by RAW 264.7 murine macrophage cells, which are important immune regulators of T-cells during inflammatory responses and infection processes. Our study reveals the potential to increase the value of ginseng marc by generating carbohydrate-based products with a higher value than animal feed.

  • 13.
    Lindbo, Sarah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Generation and engineering of ABD-derived affinity proteins for clinical applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Proteins that specifically recognize and bind to other molecules or structures are important tools in industrial and medical applications. Binding proteins engineered from small stable scaffold proteins have been utilized for several purposes due to their favorable biophysical properties, tolerance to mutagenesis, efficient tissue penetration and ease of production. The 46 amino acid long albumin-binding domain (ABD) derived from the bacterial receptor Protein G is a promising scaffold that has been explored in this thesis. The scaffold was subjected to combinatorial protein engineering for generation of ABD-derived binding proteins with novel specificities. Furthermore, the medical potential of engineered ABD- derived affinity proteins (ADAPTs) was evaluated in a series of pre-clinical studies.

    In the first studies, ADAPTs suitability as tracers for radionuclide molecular imaging was evaluated. Factors influencing biodistribution and tumor targeting properties were assessed in mice models bearing HER2 positive xenografts. All tested ADAPT constructs demonstrated high and specific targeting of HER2-expressing tumor cells as well as fast clearance from circulation. The results also showed that the size and character of the N- terminus affected the biodistribution profile of ADAPTs. Moreover, the targeting properties of ADAPTs proved to be highly influenced by the residualizing properties of the attached radionuclide label. Taken together, the results provided the first evidence that tumor imaging can be performed using ADAPTs and the favorable pharmacokinetic profiles in the studied mice models suggest that the scaffold is a promising candidate for clinical applications.

    In the last study, a platform for generation of stable ABD-derived affinity proteins with novel binding specificities was established using a multi-step approach combining directed evolution and rational protein design. A broad combinatorial protein library with 20 randomized positions in ABD was designed and binders against three distinct targets were selected using phage display. Characterization of the selected binders provided information regarding optimal positions to randomize in a final library. In addition, the isolated binders were subjected to mutagenesis in certain surface exposed positions and mutations that provided increased stability were introduced into the original scaffold. Finally, a more focused combinatorial protein library consisting of 11 randomized positions was designed and constructed. The library was validated by selections against the same set of targets as for the first, broad library. The isolation of highly stable affinity ligands confirms that the library can be used for generation of diverse and stable affinity molecules.

  • 14.
    Volk, Anna-Luisa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Cell line and protein engineering tools for production and characterization of biologics2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Our increasing understanding of disease mechanisms coupled with technological advances has facilitated the generation of pharmaceutical proteins, which are able to address yet unmet medical needs. Diseases that were fatal in the past can now be treated with novel biological medications improving and prolonging life for many patients. Pharmaceutical protein production is, however, a complex undertaking, which is by no means problem-free. The demand for more complex proteins and the realization of the importance of post-translational modifications have led to an increasing use of mammalian cells for protein expression. Despite improvements in design and production, the costs required for the development of pharmaceutical proteins still are far greater than those for conventional, small molecule drugs. To render such treatments affordable for healthcare suppliers and assist in the implementation of precision medicine, further progress is needed. In five papers this thesis describes strategies and methods that can help to advance the development and manufacturing of pharmaceutical proteins. Two platforms for antibody engineering have been developed and evaluated, one of which allows for efficient screening of antibody libraries whilst the second enables the straightforward generation of bispecific antibodies. Moreover, a method for epitope mapping has been devised and applied to map the therapeutic antibody eculizumab’s epitope on its target protein. In a second step it was shown how this epitope information can be used to stratify patients and, thus, contribute to the realization of precision medicine. The fourth project focuses on the cell line development process during pharmaceutical protein production. A platform is described combining split-GFP and fluorescence-activated droplet sorting, which allows for the efficient selection of highly secreting cells from a heterogeneous cell pool. In an accompanying study, the split-GFP probe was improved to enable shorter assay times and increased sensitivity, desirable characteristics for high-throughput screening of cell pools. In summary, this thesis provides tools to improve design, development and production of future pharmaceutical proteins and as a result, it makes a contribution to the goal of implementing precision medicine through the generation of more cost-effective biopharmaceuticals for well-characterized patient groups.

  • 15.
    Volk, Anna-Luisa
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hansen, Henning G.
    Lundqvist, Magnus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hammar, Petter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bai, Yunpeng
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kol, Stefan
    Kildegaard, Helene F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Joensson, Haakan N.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Droplet microfluidics and split-GFP complementation enable selection of Chinese hamster ovary cells with high specific productivity of therapeutic glycoproteinsManuscript (preprint) (Other academic)
  • 16.
    Volk, Anna-Luisa
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ko, Bong-Kook
    Lundqvist, Magnus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lee, Hyun-Jong
    Frejd, Fredrik Y.
    Kim, Kyu-Tae
    Lee, Jong-Seo
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Bi-specific antibody molecule inhibits tumor cell proliferation more efficiently than the two-molecule combinationManuscript (preprint) (Other academic)
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf