Change search
Refine search result
123 1 - 50 of 119
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Acero Sanchez, Josep Ll.
    et al.
    Joda, Hamdi
    Henry, Olivier Y. F.
    Solnestam, Beata W.
    Kvastad, Linda
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sahlén, Pelin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Laddach, Nadja
    Ramakrishnan, Dheeraj
    Riley, Ian
    Schwind, Carmen
    Latta, Daniel
    O'Sullivan, Ciara K.
    Electrochemical Genetic Profiling of Single Cancer Cells2017In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 89, no 6, p. 3378-3385Article in journal (Refereed)
    Abstract [en]

    Recent understandings in the development and spread of cancer have led to the realization of novel single cell analysis platforms focused on circulating tumor cells (CTCs). A simple, rapid, and inexpensive analytical platform capable of providing genetic information on these rare cells is highly desirable to support clinicians and researchers alike to either support the selection or adjustment of therapy or provide fundamental insights into cell function and cancer progression mechanisms. We report on the genetic profiling of single cancer cells, exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and electrochemical detection. Cells were isolated using laser capture and lysed, and the mRNA was extracted and transcribed into DNA. Seven markers were amplified by MLPA, which allows for the simultaneous amplification of multiple targets with a single primer pair, using MLPA probes containing unique barcode sequences. Capture probes complementary to each of these barcode sequences were immobilized on a printed circuit board (PCB) manufactured electrode array and exposed to single-stranded MLPA products and subsequently to a single stranded DNA reporter probe bearing a HRP molecule, followed by substrate addition and fast electrochemical pulse amperometric detection. We present asimple, rapid, flexible, and inexpensive approach for the simultaneous quantification of multiple breast cancer related mRNA markers, with single tumor cell sensitivity.

  • 2.
    Ahrenstedt, Lage
    et al.
    KTH, School of Biotechnology (BIO). KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Olksanen, Antti
    VTT Technical Research Centre of Finland.
    Salmien, Kristian
    VTT Technical Research Centre of Finland.
    Brumer, Harry
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Paper dry strength improvement by xyloglucan addition: Wet-end application, spray coating and synergism with borate2008In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 62, no 1, p. 8-14Article in journal (Refereed)
    Abstract [en]

    The polysaccharide xyloglucan as a wet-end additive improves paper properties. In the present study, paper strength improvement was analysed for dry handsheets made from chemical, mechanical and recycled pulps coated with xyloglucan in a spray application. Results are compared with sheets made from the same pulps treated with xyloglucan in the wet-end. Kraft pulp handsheets of bleached hardwood and softwood showed significant improvements of tensile, tear and Z-strength by xyloglucan spray treatment versus wet-end application, whereas handsheets of de-inked and thermomechanical pulp were improved only slightly. In both wet-end and spray applications, the effect of xyloglucan addition was intimately related to the presence of non-cellulosic components on the fibre surface. Further strength improvements were obtained for chemical pulps by addition of borax to the spray solution, which were likely to be due to the formation of borate-mediated xyloglucan cross-links. Spray coating of xyloglucan, with or without borax, thus represents a potential new application of this polysaccharide to increase paper dry strength.

  • 3. Albèr, C.
    et al.
    Brandner, B. D.
    Björklund, S.
    Billsten, P.
    Corkery, Robert
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Engblom, J.
    Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy2013In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1828, no 11, p. 2470-2478Article in journal (Refereed)
    Abstract [en]

    The rather thin outermost layer of the mammalian skin, stratum corneum (SC), is a complex biomembrane which separates the water rich inside of the body from the dry outside. The skin surface can be exposed to rather extreme variations in ambient conditions (e.g. water activity, temperature and pH), with potential effects on the barrier function. Increased understanding of how the barrier is affected by such changes is highly relevant for regulation of transdermal uptake of exogenous chemicals. In the present study we investigate the effect of hydration and the use of a well-known humectant, urea, on skin barrier ultrastructure by means of confocal Raman microspectroscopy. We also perform dynamic vapor sorption (DVS) microbalance measurements to examine the water uptake capacity of SC pretreated with urea. Based on novel Raman images, constructed from 2D spectral maps, we can distinguish large water inclusions within the skin membrane exceeding the size of fully hydrated corneocytes. We show that these inclusions contain water with spectral properties similar to that of bulk water. The results furthermore show that the ambient water activity has an important impact on the formation of these water inclusions as well as on the hydration profile across the membrane. Urea significantly increases the water uptake when present in skin, as compared to skin without urea, and it promotes formation of larger water inclusions in the tissue. The results confirm that urea can be used as a humectant to increase skin hydration.

  • 4. Alvarez, Francisco J.
    et al.
    Ryman, Kicki
    Hooijmaijers, Cornelis
    KTH, School of Biotechnology (BIO), Glycoscience.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Ljungdahl, Per O.
    Diverse Nitrogen Sources in Seminal Fluid Act in Synergy To Induce Filamentous Growth of Candida albicans2015In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 81, no 8, p. 2770-2780Article in journal (Refereed)
    Abstract [en]

    The pathogenic fungus Candida albicans is the leading cause of vulvovaginal candidiasis (VVC). VVC represents a major quality- of-life issue for women during their reproductive years, a stage of life where the vaginal epithelium is subject to periodic hormonally induced changes associated with menstruation and concomitant exposure to serum as well as potential intermittent contact with seminal fluid. Seminal fluid potently triggers Candida albicans to switch from yeastlike to filamentous modes of growth, a developmental response tightly linked to virulence. Conversely, vaginal fluid inhibits filamentation. Here, we used artificial formulations of seminal and vaginal fluids that faithfully mimic genuine fluids to assess the contribution of individual components within these fluids to filamentation. The high levels of albumin, amino acids, and N-acetylglucosamine in seminal fluid act synergistically as potent inducers of filamentous growth, even at atmospheric levels of CO2 and reduced temperatures (30 degrees C). Using a simplified in vitro model that mimics the natural introduction of seminal fluid into the vulvovaginal environment, a pulse of artificial seminal fluid (ASF) was found to exert an enduring potential to overcome the inhibitory efficacy of artificial vaginal fluid (AVF) on filamentation. These findings suggest that a transient but substantial change in the nutrient levels within the vulvovaginal environment during unprotected coitus can induce resident C. albicans cells to engage developmental programs associated with virulent growth.

  • 5.
    Barnkob, Rune
    et al.
    Tech Univ Denmark, Lyngby, Denmark .
    Iranmanesh, Ida
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Wiklund, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Bruus, Henrik
    Tech Univ Denmark, Lyngby, Denmark .
    Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method2012In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, no 13, p. 2337-2344Article in journal (Refereed)
    Abstract [en]

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels.

  • 6. Basile, Walter
    et al.
    Sachenkova, Oxana
    Light, Sara
    Elofsson, Arne
    KTH, Centres, SeRC - Swedish e-Science Research Centre.
    High GC content causes orphan proteins to be intrinsically disordered2017In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 13, no 3, article id e1005375Article in journal (Refereed)
    Abstract [en]

    De novo creation of protein coding genes involves the formation of short ORFs from noncoding regions; some of these ORFs might then become fixed in the population These orphan proteins need to, at the bare minimum, not cause serious harm to the organism, meaning that they should for instance not aggregate. Therefore, although the creation of short ORFs could be truly random, the fixation should be subjected to some selective pressure. The selective forces acting on orphan proteins have been elusive, and contradictory results have been reported. In Drosophila young proteins are more disordered than ancient ones, while the opposite trend is present in yeast. To the best of our knowledge no valid explanation for this difference has been proposed. To solve this riddle we studied structural properties and age of proteins in 187 eukaryotic organisms. We find that, with the exception of length, there are only small differences in the properties between proteins of different ages. However, when we take the GC content into account we noted that it could explain the opposite trends observed for orphans in yeast (low GC) and Drosophila (high GC). GC content is correlated with codons coding for disorder promoting amino acids. This leads us to propose that intrinsic disorder is not a strong determining factor for fixation of orphan proteins. Instead these proteins largely resemble random proteins given a particular GC level. During evolution the properties of a protein change faster than the GC level causing the relationship between disorder and GC to gradually weaken.

  • 7.
    Baumann, Martin J.
    KTH, School of Biotechnology (BIO).
    Xyloglucan-active enzymes: properties, structures and applications2007Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Cellulosic materials are the most abundant renewable resource in the world; plant cell walls are natural composite materials containing crystalline cellulose embedded in a matrix of hemicelluloses, structural proteins, and lignin. Xyloglucans are an important group of hemicelluloses, which coat and cross-link crystalline cellulose in the plant cell wall. In this thesis, structure-function relationships of a range of xyloglucan-active enzymes were examined.

    A paradigm for efficient enzymatic biomass utilization is the cellulosome of the anaerobic bacterium Clostridium thermocellum. The cellulosome is a high molecular weight complex of proteins with diverse enzyme activities, including the inverting xyloglucan endo-hydrolase CtXGH74A. The protein structure of CtXGH74A was solved in complex with xyloglucan oligosaccharides (XGOs) which stabilized disordered loops of the apo-structure. Further detailed kinetic and product analyses were used to conclusively demonstrate that CtXGH74A is an endo-xyloglucase that produces Glc4-based XGOs as limit digestion products.

    In comparison, the retaining glycoside hydrolase family 16 (GH16) contains hydrolytic endo-xyloglucanases as well as xyloglucan transglycosylases (XETs) from plants. To elucidate the determinants of the transglycosylase/hydrolysis ratio in GH16 xyloglucan-active enzymes, a strict transglycosylase, PttXET16-34 from hybrid aspen, was compared structurally and kinetically with the closely related hydrolytic enzyme NXG1 from nasturtium. A key loop extension was identified in NXG1, truncation of which yielded a mutant enzyme that exhibited an increased transglycosylase rate and reduced hydrolytic activity. Kinetic studies were facilitated by the development of new, sensitive assays using well-defined XGOs and a series of chromogenic XGO aryl-glycosides.

    A detailed understanding of GH16 xyloglucan enzymology has paved the way for the development of a novel chemo-enzymatic approach for biomimetic fiber surface modification, in which the transglycosylating activity of PttXET16-34 was employed. Aminoalditol derivates of XGOs were used as key intermediates to incorporate novel chemical functionality into xyloglucan, including chromophores, reactive groups, protein ligands, and initiators for polymerization reactions. The resulting modified xyloglucans were subsequently bound to a range of cellulose materials to radically alter surface properties. As such, the technology provides a novel, versatile toolkit for fiber surface modification.

  • 8.
    Beven, Laure
    et al.
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Charenton, Claire
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Dautant, Alain
    Univ Bordeaux, Bordeaux, France ; IBMC, CNRS, Bordeaux, France.
    Bouyssou, Guillaume
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Labroussaa, Fabien
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Sköllermo, Anna
    KTH, School of Biotechnology (BIO), Proteomics. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Blanchard, Alain
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Sirand-Pugnet, Pascal
    Univ Bordeaux, Villenave Dornon, France ; INRA Villenave Dornon, France .
    Specific Evolution of F-1-Like ATPases in Mycoplasmas2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 6, p. e38793-Article in journal (Refereed)
    Abstract [en]

    F1F0 ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F1F0 ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the alpha, beta, gamma and e subunits of F-1 ATPases and could form an F-1-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F-1-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F-1-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F-1-like structure is associated with a hypothetical X-0 sector located in the membrane of mycoplasma cells.

  • 9.
    Blomfeldt, Thomas O. J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Kuktaite, Ramune
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Johansson, Eva
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Mechanical Properties and Network Structure of Wheat Gluten Foams2011In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, no 5, p. 1707-1715Article in journal (Refereed)
    Abstract [en]

    This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.

  • 10. Bollampalli, V. P.
    et al.
    Harumi Yamashiro, L.
    Feng, X.
    Bierschenk, D.
    Gao, Y.
    Blom, Hans
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Henriques-Normark, B.
    Nylén, S.
    Rothfuchs, A. G.
    BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAMlow CD11bhigh Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming2015In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 11, no 10, article id e1005206Article in journal (Refereed)
    Abstract [en]

    The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration.

  • 11. Bouzenzana, Jamel
    et al.
    Pelosi, Ludovic
    Briolay, Anne
    Briolay, Jerome
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Identification of the first Oomycete annexin as a (1 -> 3)-beta-D-glucan synthase activator2006In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 62, no 2, p. 552-565Article in journal (Refereed)
    Abstract [en]

    (1 -> 3)-beta-D-Glucans are major components of the cell walls of Oomycetes and as such they play an essential role in the morphogenesis and growth of these microorganisms. Despite the biological importance of (1 -> 3)-beta-D-glucans, their mechanisms of biosynthesis are poorly understood. Previous studies on (1 -> 3)-beta-D-glucan synthases from Saprolegnia monoica have shown that three protein bands of an apparent molecular weight of 34, 48 and 50 kDa co-purify with enzyme activity. However, none of the corresponding proteins have been identified. Here we have identified, purified, sequenced and characterized a protein from the 34 kDa band and clearly shown that it has all the biochemical properties of proteins from the annexin family. In addition, we have unequivocally demonstrated that the purified protein is an activator of (1 -> 3)-beta-D-glucan synthase. This represents a new type of function for proteins belonging to the annexin family. Two other proteins from the 48 and 50 kDa bands were identified as ATP synthase subunits, which most likely arise from contaminations by mitochondria during membrane preparation. The results, which are discussed in relation with the possible regulation mechanisms of (1 -> 3)-beta-D-glucan synthases, represent a first step towards a better understanding of cell wall polysaccharide biosynthesis in Oomycetes.

  • 12.
    Branneby, Cecilia
    KTH, School of Biotechnology (BIO), Biochemistry.
    Exploiting enzyme promiscuity for rational design2005Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Enzymes are today well recognized in various industrial applications, being an important component in detergents, and catalysts in the production of agrochemicals, foods, pharmaceuticals, and fine chemicals. Their large use is mainly due to their high selectivity and environmental advantage, compared to traditional catalysts. Tools and techniques in molecular biology offer the possibility to screen the natural sources and engineer new enzyme activities which further increases their usefulness as catalysts, in a broader area.

    Although enzymes show high substrate and reaction selectivity many enzymes are today known to catalyze other reactions than their natural ones. This is called enzyme promiscuity. It has been suggested that enzyme promiscuity is Nature’s way to create diversity. Small changes in the protein sequence can give the enzyme new reaction specificity.

    In this thesis I will present how rational design, based on molecular modeling, can be used to explore enzyme promiscuity and to change the enzyme reaction specificity. The first part of this work describes how Candida antarctica lipase B (CALB), by a single point mutation, was mutated to give increased activity for aldol additions, Michael additions and epoxidations. The activities of these reactions were predicted by quantum chemical calculations, which suggested that a single-point mutant of CALB would catalyze these reactions. Hence, the active site of CALB, which consists of a catalytic triad (Ser, His, Asp) and an oxyanion hole, was targeted by site-directed mutagenesis and the nucleophilic serine was mutated for either glycine or alanine. Enzymes were expressed in Pichia pastoris and analyzed for activity of the different reactions. In the case of the aldol additions the best mutant showed a four-fold initial rate over the wild type enzyme, for hexanal. Also Michael additions and epoxidations were successfully catalyzed by this mutant.

    In the last part of this thesis, rational design of alanine racemase from Geobacillus stearothermophilus was performed in order to alter the enzyme specificity. Active protein was expressed in Escherichia coli and analyzed. The explored reaction was the conversion of alanine to pyruvate and 2-butanone to 2-butylamine. One of the mutants showed increased activity for transamination, compared to the wild type.

  • 13.
    Byström, Sanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Affinity assays for profiling disease-associated proteins in human plasma2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Affinity-based proteomics offers opportunities for the discovery and validation of disease-associated proteins in human body fluids. This thesis describes the use of antibody-based immunoassays for multiplexed analysis of proteins in human plasma, serum and cerebrospinal fluid (CSF). This high-throughput method was applied with the objective to identify proteins associated to clinical variables. The main work in this thesis was conducted within the diseases of multiple sclerosis and malignant melanoma, as well as mammographic density, a risk factor for breast cancer.

    The suspension bead array (SBA) technology has been the main method for the work presented in this thesis (Paper I-IV). SBA assays and other affinity proteomic technologies were introduced for protein profiling of sample material obtained from clinical collaborators and biobanks. Perspectives on the validation of antibody selectivity by means of e.g. immuno-capture mass spectrometry are also provided.

    Paper I describes the development and application of a protocol for multiplexed pro- tein profiling of CSF. The analysis of 340 CSF samples from patients with multiple sclerosis and other neurological disease revealed proteins with potential association to disease progression (GAP43) and inflammation (SERPINA3). Paper II continued on this work with an extended investigation of more than 1,000 clinical samples and included both plasma and CSF collected from the same patients. Comparison of disease subtypes and controls revealed five plasma proteins of potential diagnostic relevance, such as IRF8 and GAP43. The previously reported associations for GAP43 and SERPINA3 in CSF was confirmed. Subsequent immunohistochemical analysis of post-mortem brain tissue revealed differential protein expression in disease affected areas. In Paper III, 150 serum samples from patients with cutaneous malignant melanoma were analyzed. Protein profiles from antibody bead arrays suggested three proteins (RGN, MTHFD1L, STX7) of differential abundance between patients with no disease recurrence and low tumor thickness (T-stage 1 and 2) compared to patients with high tumor thickness (T-stage 3 and 4) and disease recurrence. We observed MTHFD1L expression in tissue of a majority of patients, while expression of STX7 in melanoma tissue had been reported previously. Paper IV describes the analysis of protein in plasma in relation to mammographic breast density (MD), one of the strongest risk factors for the development of breast cancers. More than 1,300 women without prior history of breast cancer were screened. Linear associations to MD in two independent sample sets were found for 11 proteins, which are expressed in the breast and involved in tissue homeostasis, DNA repair, cancer development and/or progression in MD.

    In conclusion, this thesis describes the use of multiplexed antibody bead arrays for protein profiling of serum, plasma and CSF, and it shortlists disease associated proteins for further validation studies. 

  • 14.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Eklund, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Eriksson, Mikael
    Czene, Kamila
    Hall, Per
    Schwenk, Jochen. M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gabrielson, Marike
    Affinity proteomic profiling of plasma for proteins associated to mammographic breast densityManuscript (preprint) (Other academic)
  • 15.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Edqvist, Per-Henrik
    Nyaiesh, Etienne-Nicholas
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Bergqvist, Michael
    Pontén, Fredrik
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Affinity proteomics exploration of melanoma identifies proteins in serum with associations to T-stage and recurrenceManuscript (preprint) (Other academic)
  • 16.
    Caraballo, Rémi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sakulsombat, Morakot
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Ramström, Olof
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Towards Dynamic Drug Design: Identification and Optimization of β-Galactosidase Inhibitors from a Dynamic Hemithioacetal System2010In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 11, no 11, p. 1600-1606Article in journal (Refereed)
    Abstract [en]

    A discovery strategy relying on the identification of fragments through resolution of a constitutional dynamic system, coupled to subsequent static ligand design and optimization, is demonstrated. The strategic design and synthesis of the best molecular fragments identified from a dynamic hemithioacetal system into static ligand structures yielded a range of -galactosidase inhibitors. Two series of structures mimicking the hemithioacetal motif were envisaged: thioglycosides and C-glycosides. Inhibition studies provided important structural information for the two groups, and 1-thiobenzyl--D-galactopyranoside demonstrated the best inhibitory effects.

  • 17. Carreras-Puigvert, J.
    et al.
    Zitnik, M.
    Jemth, A. -S
    Carter, M.
    Unterlass, J. E.
    Hallström, Björn M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Loseva, O.
    Karem, Z.
    Calderón-Montanõ, J. M.
    Lindskog, C.
    Edqvist, P. -H
    Matuszewski, D. J.
    Ait Blal, Hammou
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Berntsson, R. P. A.
    Häggblad, M.
    Martens, U.
    Studham, M.
    Lundgren, B.
    Wählby, C.
    Sonnhammer, E. L. L.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stenmark, P.
    Zupan, B.
    Helleday, T.
    A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family2017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, no 1, article id 1541Article in journal (Refereed)
    Abstract [en]

    The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality.

  • 18.
    Chotteau, Veronique
    et al.
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Wang, Jingjiao
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Tolf, Erika
    KTH, School of Biotechnology (BIO), Bioprocess Technology.
    Wicklund, Linn
    Karolinska Institute, Department of Neurobiology, Care Sciences and Society.
    Hovatta, Outi
    Karolinska Institutet, Department of Clinical Science.
    Marutle, Amelia
    Karolinska Institute, Department of Neurobiology, Care Sciences and Society.
    Comparison of cultivation in Techne spinner, Bellco spinner, shake flask and T-flask of human embryonic stem cells2010In: Proceedings of the SBE's Second International Conference on Stem Cell Engineering, 2010Conference paper (Other academic)
    Abstract [en]

    The recent progress in regenerative medicine indicates that pluripotent human embryonic stem cells (hESCs) may hold great potential providing cellular models for drug development and screening, modelling diseases as well as aid in the development of future cell-based therapies for neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. Crucial to the success of generating specialized cell populations, is an understanding of the mechanisms, which influence the control of cell growth and differentiation by extrinsic and intrinsic factors. Nowadays, a limitation for the use of hESCs is the lack of proliferation methods in large scale. The purpose of the present work was to study several cultivation systems, which could potentially provide large-scale cultivation processes suitable for human therapy applications. Pluripotent human embryonic stem cells (hESCs), isolated from the inner cell mass of the blastocyst, were cultivated undifferentiated as embryoids bodies, i.e. large spherical aggregates of cells, in absence of serum and feeder layer. The cell growth and culture behavior in T-falsk, orbitally agitated shake flask, Bellco stirred spinner and Techne stirred spinner were observed. In Bellco spinner, the cells were agitated by a rotating impeller providing a movement comparable to stirred bioreactors. In Techne spinner, a slow and gentle orbital movement provided by a rotating bulb-ended stirrer maintained the cells in suspension. The design of this latter spinner allowed lower shear stress in comparison to Bellco spinner and shake flask. It was observed that the cell growth was fastest in Techne spinner followed by cultivation in T-flask and then cultivation in shake flask. Cultivating in Bellco spinner resulted in embryoid dissociation and viability decrease after 14 days. A larger number of single cells, i.e. cells not growing in aggregates, was observed in the static T-flask culture compared to the agitated systems, i.e. shake flask, Bellco spinner or Techne spinner. Probably the agitation promoted the spontaneous aggregation of the cells in spheres. In particular the Techne spinner allowed the most perfect spherical form among the different compared systems. Finally it was observed that hypoxia with 4 % oxygen concentration improved significantly the growth in Techne spinner or T-flask in comparison with normoxia with 21 % oxygen concentration. It was concluded that cultivation in Techne spinner under hypoxia was the most favorable condition among the ones studied here. The agitation provided by Techne spinner improved the cell growth in comparison with static system (T-flask). However using the other agitated systems, shake flask and Bellco spinner, was not comparably beneficial to the cell growth and viability, probably due to the higher shear stress of these systems compared to Techne spinner.

  • 19.
    Costa Felicissimo, Viviane
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Infrared - X-ray pump probe spectroscopy2005Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    The present thesis concerns theoretical studies of molecular interactions investigated by infrared and X-ray spectroscopic techniques, with emphasis on using the two technologies combined in pump probe experiments. Three main types of studies are addressed: the use of near-edge X-ray absorption fine structure spectra (NEXAFS) to manifest through-bond and through-space interactions; the role of hydrogen bonding on the formation of X-ray photoelectron spectra as evidenced by simulations of the water dimer; and the development of theory, with sample applications, for infrared X-ray pump probe spectroscopy - the main theme of the thesis.

    Ab initio calculations indicate that NEXAFS spectra give direct information about the through-bond and through-space interactions between vacant non-conjugated π* orbitals. It is found that the X-ray photoelectron spectrum of the water dimer differs strongly from the monomer spectrum in that two bands are observed, separated by the chemically shifted ionization potentials of the donor and the acceptor. The hydrogen bond is responsible for the anomalously strong broadening of these two bands. The studies show that X-ray core electron ionization of the water dimer driven by an infrared field is a proper technique to prove the proton transfered state contrary to conventional X-ray photoelectron spectroscopy. Our simulations of infrared X-ray pump-probe spectra were carried out using wave packet propagation techniques.

    The physical aspects of the proposed new X-ray spectroscopic method - phase sensitive Infrared - X-ray pump probe spectroscopy - are examined in detail in two sample applications - on the NO molecule and on the dynamics of proton transfer in core ionized water dimer. It is found that the phase of the infrared pump field strongly influences the trajectory of the nuclear wave packet on the ground state potential. This results in a phase dependence of the X-ray pump probe spectra. A proper choice of the delay time of the X-ray pulse allows to directly observe the X-ray transition in the proton transfered well of the core excited potential.

  • 20.
    Dahlsson Leitao, Charles
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Rinne, S. S.
    Mitran, B.
    Vorobyeva, A.
    Andersson, Ken Gösta
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Tolmachev, V.
    Ståhl, Stefan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Löfblom, John
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Orlova, A.
    Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68 Ga-Labeled Tracers2019In: International Journal of Molecular Sciences, ISSN 1422-0067, E-ISSN 1422-0067, Vol. 20, no 5Article in journal (Refereed)
    Abstract [en]

    Affibody-based imaging of HER3 is a promising approach for patient stratification. We investigated the influence of a hydrophilic HEHEHE-tag ((HE)₃-tag) and two different gallium-68/chelator-complexes on the biodistribution of Z08698 with the aim to improve the tracer for PET imaging. Affibody molecules (HE)₃-Z08698-X and Z08698-X (X = NOTA, NODAGA) were produced and labeled with gallium-68. Binding specificity and cellular processing were studied in HER3-expressing human cancer cell lines BxPC-3 and DU145. Biodistribution was studied 3 h p.i. in Balb/c nu/nu mice bearing BxPC-3 xenografts. Mice were imaged 3 h p.i. using microPET/CT. Conjugates were stably labeled with gallium-68 and bound specifically to HER3 in vitro and in vivo. Association to cells was rapid but internalization was slow. Uptake in tissues, including tumors, was lower for (HE)₃-Z08698-X than for non-tagged variants. The neutral [68Ga]Ga-NODAGA complex reduced the hepatic uptake of Z08698 compared to positively charged [68Ga]Ga-NOTA-conjugated variants. The influence of the chelator was more pronounced in variants without (HE)3-tag. In conclusion, hydrophilic (HE)₃-tag and neutral charge of the [68Ga]Ga-NODAGA complex promoted blood clearance and lowered hepatic uptake of Z08698. [68Ga]Ga-(HE)₃-Z08698-NODAGA was considered most promising, providing the lowest blood and hepatic uptake and the best imaging contrast among the tested variants.

  • 21. Delsing, Louise
    et al.
    Donnes, Pierre
    Sanchez, Jost
    Clausen, Maryam
    Voulgaris, Dimitrios
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Falk, Anna
    Herland, Anna
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Brolen, Gabriella
    Zetterberg, Henrik
    Hicks, Ryan
    Synnergren, Jane
    Barrier properties and transcriptome expression in human iPSC‐derived models of the blood–brain barrier2018In: Stem Cells, ISSN 1066-5099, E-ISSN 1549-4918, Vol. 36, no 12, p. 1816-1827Article in journal (Refereed)
    Abstract [en]

    Cell-based models of the blood-brain barrier (BBB) are important for increasing the knowledge of BBB formation, degradation and brain exposure of drug substances. Human models are preferred over animal models because of interspecies differences in BBB structure and function. However, access to human primary BBB tissue is limited and has shown degeneration of BBB functions in vitro. Human induced pluripotent stem cells (iPSCs) can be used to generate relevant cell types to model the BBB with human tissue. We generated a human iPSC-derived model of the BBB that includes endothelial cells in coculture with pericytes, astrocytes and neurons. Evaluation of barrier properties showed that the endothelial cells in our coculture model have high transendothelial electrical resistance, functional efflux and ability to discriminate between CNS permeable and non-permeable substances. Whole genome expression profiling revealed transcriptional changes that occur in coculture, including upregulation of tight junction proteins, such as claudins and neurotransmitter transporters. Pathway analysis implicated changes in the WNT, TNF, and PI3K-Akt pathways upon coculture. Our data suggest that coculture of iPSC-derived endothelial cells promotes barrier formation on a functional and transcriptional level. The information about gene expression changes in coculture can be used to further improve iPSC-derived BBB models through selective pathway manipulation.

  • 22.
    Drobin, Kimi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Antibody-based bead arrays for high-throughput protein profiling in human plasma and serum2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Affinity-based proteomics utilizes affinity binders to detect target proteins in a large-scale manner. This thesis describes a high-throughput method, which enables the search for biomarker candidates in human plasma and serum. A highly multiplexed antibody-based suspension bead array is created by coupling antibodies generated in the Human Protein Atlas project to color-coded beads. The beads are combined for parallel analysis of up to 384 analytes in patient and control samples. This provides data to compare protein levels from the different groups.

    In paper I osteoporosis patients are compared to healthy individuals to find disease-linked proteins. An untargeted discovery screening was conducted using 4608 antibodies in 16 cases and 6 controls. This revealed 72 unique proteins, which appeared differentially abundant. A validation screening of 91 cases and 89 controls confirmed that the protein autocrine motility factor receptor (AMFR) is decreased in the osteoporosis patients.

    Paper II investigates the risk proteome of inflammatory bowel disease (IBD). Antibodies targeting 209 proteins corresponding to 163 IBD genetic risk loci were selected. To find proteins related to IBD or its subgroups, sera from 49 patients with Crohn’s disease, 51 with ulcerative colitis and 50 matched controls were analyzed. From these targeted assays, the known inflammation-related marker serum amyloid protein A (SAA) was shown to be elevated in the IBD cases. In addition, the protein laccase (multi-copper oxidoreductase) domain containing 1 (LACC1) was found to be decreased in the IBD subjects.

    In conclusion, assays using affinity-based bead arrays were developed and applied to screen human plasma and serum samples in two disease contexts. Untargeted and targeted screening strategies were applied to discover disease-associated proteins. Upon further validation, these potential biomarker candidates could be valuable in future disease studies.

  • 23.
    Drobin, Kimi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics.
    Assadi, Ghazaleh
    Hong, Mun-Gwan
    Andersson, Eni
    Fredolini, Claudia
    Forsström, Björn
    Reznichenko, Anna
    Akhter, Tahmina
    Ek, Weronica
    Bonfiglio, Ferdinando
    Berner Hansen, Mark
    Sandberg, Kristian
    Greco, Dario
    Repsilber, Dirk
    Schwenk, Jochen
    D'Amato, Mauro
    Halfvarson, Jonas
    Targeted analysis of serum proteins encoded at known inflammatory bowel disease risk lociManuscript (preprint) (Other academic)
  • 24.
    El-Sayed, R.
    et al.
    Karolinska Inst, Dept Lab Med, Expt Canc Med, S-14186 Stockholm, Sweden..
    Waraky, A.
    Gothenburg Univ, Dept Lab Med, Gothenburg, Sweden..
    Ezzat, K.
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden..
    Albabtain, R.
    King Saud Univ, Coll Appl Med Sci, Riyadh, Saudi Arabia..
    $$$Eigammal, K.
    KTH, Dept Elect & Embedded Syst, Stockholm, Sweden..
    Shityakov, S.
    Univ Hosp Wilrzburg, Dept Anesthesia & Crit Care, Wurzburg, Germany..
    Muhammed, Mamoun
    KTH.
    Hassan, M.
    Karolinska Inst, Dept Lab Med, Expt Canc Med, S-14186 Stockholm, Sweden.;Karolinska Univ Hosp Huddinge, Clin Res Ctr, Stockholm, Sweden..
    Degradation of pristine and oxidized single wall carbon nanotubes by CYP3A42019In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 515, no 3, p. 487-492Article in journal (Refereed)
    Abstract [en]

    Carbon nanotubes (CNTs) are a class of carbon based nanomaterials which have attracted substantial attention in recent years as they exhibit outstanding physical, mechanical and optical properties. In the last decade many studies have emerged of the underlying mechanisms behind CNT toxicity including malignant transformation, the formation of granulomas, inflammatory responses, oxidative stress, DNA damage and mutation. In the present investigation, we studied the biodegradation of single-walled carbon nanotubes (SWCNTs) by Cytochrome P450 enzymes (CYP3A4) through using Raman spectroscopy. CYP3A4 is known isozyme accountable for metabolizing various endogenous and exogenous xenobiotics. CYP3A4 is expressed dominantly in the liver and other organs including the lungs. Our results suggest that CYP3A4 has a higher affinity for p-SWNTs compared to c-SWNTs. HEK293 cellular viability was not compromised when incubated with SWNT. However, CYP3A4 transfected HEK293 cell line showed no digestion of cSWNTs after incubation for 96 h. Cellular uptake of c-SWNTs was observed by electron microscopy and localization of c-SWNTs was confirmed in endosomal vesicles and in the cytoplasm. This is the first study CYP3A4 degrading both p-SWNTs and c-SWNTs in an in vitro setup. Interestingly, our results show that CYP3A4 is more proficient in degrading p-SWNTs than c-SWNTs. We also employed computational modeling and docking assessments to develop a further understanding of the molecular interaction mechanism. 

  • 25.
    Eriksson, Magnus
    KTH, School of Biotechnology (BIO), Biochemistry.
    Lipase-Catalyzed Syntheses of Telechelic Polyesters2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Telechelic polyesters have successfully been synthesized with lipase-catalyzed polymerization. The produced telechelics had a high degree of di­functionalization, high purity (requiring little or no workup) and controlled degree of polymerization. The syntheses were performed in one-pot one-step reaction systems. The use of protection/deprotection chemistry was not necessary, since the lipase selectivity was utilized in the syntheses. Two different types of lipase-catalyzed polymerizations were applied – ring-opening polymerization and polycondensation. In ring-opening polymerization telechelics were produced by a combination of initiation, α-functionalization, and linking through termination, w-func­tionalization. In polycondensation different types of end-cappers were used to synthesize telechelics. Several exampels of functional groups were used for end-functionalization - epoxide, methacrylate and tetraallyls. Enzyme kinetic schemes describing the different functionalization met­hods of polyesters are presented and discussed. Stoichiometry and different reaction conditions have been studied to understand the effects these functions have on the final structure of the synthesized telechelics. Polyesters are classified as biodegradable, and can also be synthesized from materials that can be extracted or fermented from renewable sources like plants. Lipase-catalysts have several beneficial attributes, like high selectivity, they are renewable and biodegradable, are non-toxic and metal-free and can operate under mild reaction conditions.

    The focus of this thesis has been on lipase-catalyzed syntheses and characterization of the produced telechelics, in addition some materials have been produced. Some uses of telechelics are surface modification, materials for block co-polymers, functional films and biomedical applications.

  • 26.
    Fleetwood, Filippa
    et al.
    KTH, School of Biotechnology (BIO), Protein Technology.
    Andersson, Ken A.
    KTH, School of Biotechnology (BIO), Protein Technology.
    Ståhl, Stefan
    KTH, School of Biotechnology (BIO), Protein Technology.
    Löfblom, John
    KTH, School of Biotechnology (BIO), Protein Technology.
    An engineered autotransporter-based surface expression vector enables efficient display of Affibody molecules on OmpT-negative E. coli as well as protease-mediated secretion in OmpT-positive strains2014In: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 13, p. 179-Article in journal (Refereed)
    Abstract [en]

    Background: Cell display technologies (e.g. bacterial display) are attractive in directed evolution as they provide the option to use flow-cytometric cell sorting for selection from combinatorial libraries. The aim of this study was to engineer and investigate an expression vector system with dual functionalities: i) recombinant display of Affibody libraries on Escherichia coli for directed evolution and ii) small scale secreted production of candidate affinity proteins, allowing initial downstream characterizations prior to subcloning. Autotransporters form a class of surface proteins in Gram-negative bacteria that have potential for efficient translocation and tethering of recombinant passenger proteins to the outer membrane. We engineered a bacterial display vector based on the E. coli AIDA-I autotransporter for anchoring to the bacterial surface. Potential advantages of employing autotransporters combined with E. coli as host include: high surface expression level, high transformation frequency, alternative promoter systems available, efficient translocation to the outer membrane and tolerance for large multi-domain passenger proteins. Results: The new vector was designed to comprise an expression cassette encoding for an Affibody molecule, three albumin binding domains for monitoring of surface expression levels, an Outer membrane Protease T (OmpT) recognition site for potential protease-mediated secretion of displayed affinity proteins and a histidine-tag for purification. A panel of vectors with different promoters were generated and evaluated, and suitable cultivation conditions were investigated. The results demonstrated a high surface expression level of the different evaluated Affibody molecules, high correlation between target binding and surface expression level, high signal-to-background ratio, efficient secretion and purification of binders in OmpT-positive hosts as well as tight regulation of surface expression for the titratable promoters. Importantly, a mock selection using FACS from a 1: 100,000 background yielded around 20,000-fold enrichment in a single round and high viability of the isolated bacteria after sorting. Conclusions: The new expression vectors are promising for combinatorial engineering of Affibody molecules and the strategy for small-scale production of soluble recombinant proteins has the potential to increase throughput of the entire discovery process.

  • 27.
    Fleetwood, Filippa
    et al.
    KTH, School of Biotechnology (BIO), Protein Technology.
    Frejd, Fredrik
    Ståhl, Stefan
    KTH, School of Biotechnology (BIO), Protein Technology.
    Löfblom, John
    KTH, School of Biotechnology (BIO), Protein Technology.
    Efficient blocking of VEGFR2-mediated signaling using biparatopic Affibody constructsManuscript (preprint) (Other academic)
  • 28. Forslund, Elin
    et al.
    Sohlberg, Ebba
    Enqvist, Monika
    Olofsson, Per E.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Malmberg, Karl-Johan
    Önfelt, Björn
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Sci Life Lab, Dept Microbiol Tumor & Cell Biol, S-17165 Stockholm, Sweden.
    Microchip-Based Single-Cell Imaging Reveals That CD56(dim) CD57(-)KIR(-)NKG2A(+) NK Cells Have More Dynamic Migration Associated with Increased Target Cell Conjugation and Probability of Killing Compared to CD56(dim)CD57(-)KIR(-)NKG2A(-) NK Cells2015In: Journal of Immunology, ISSN 0022-1767, E-ISSN 1550-6606, Vol. 195, no 7, p. 3374-3381Article in journal (Refereed)
    Abstract [en]

    NK cells are functionally educated by self-MHC specific receptors, including the inhibitory killer cell Ig-like receptors (KIRs) and the lectin-like CD94/NKG2A heterodimer. Little is known about how NK cell education influences qualitative aspects of cytotoxicity such as migration behavior and efficacy of activation and killing at the single-cell level. In this study, we have compared the behavior of FACS-sorted CD56(dim)CD57(-)KIR(-)NKG2A(+) (NKG2A(+)) and CD56(dim)CD57(-)KIR(-)NKG2A(+) (lacking inhibitory receptors; IR-) human NK cells by quantifying migration, cytotoxicity, and contact dynamics using microchip-based live cell imaging. NKG2A(+) NK cells displayed a more dynamic migration behavior and made more contacts with target cells than IR-NK cells. NKG2A(+) NK cells also more frequently killed the target cells once a conjugate had been formed. NK cells with serial killing capacity were primarily found among NKG2A(+) NK cells. Conjugates involving IR- NK cells were generally more short-lived and IR- NK cells did not become activated to the same extent as NKG2A(+) NK cells when in contact with target cells, as evident by their reduced spreading response. In contrast, NKG2A(+) and IR- NK cells showed similar dynamics in terms of duration of conjugation periods and NK cell spreading response in conjugates that led to killing. Taken together, these observations suggest that the high killing capacity of NKG2A(+) NK cells is linked to processes regulating events in the recognition phase of NK-target cell contact rather than events after cytotoxicity has been triggered.

  • 29. Friboulet, Luc
    et al.
    Barrios-Gonzales, Daniel
    Commo, Frederic
    Olaussen, Ken Andre
    Vagner, Stephan
    Adam, Julien
    Goubar, Aicha
    Dorvault, Nicolas
    Lazar, Vladimir
    Job, Bastien
    Besse, Benjamin
    Validire, Pierre
    Girard, Philippe
    Lacroix, Ludovic
    Hasmats, Johanna
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dufour, Fabienne
    Andre, Fabrice
    Soria, Jean-Charles
    Molecular Characteristics of ERCC1-Negative versus ERCC1-Positive Tumors in Resected NSCLC2011In: Clinical Cancer Research, ISSN 1078-0432, E-ISSN 1557-3265, Vol. 17, no 17, p. 5562-5572Article in journal (Refereed)
    Abstract [en]

    Purpose: Excision repair cross-complementation group 1 (ERCC1) is a protein involved in repair of DNA platinum adducts and stalled DNA replication forks. We and others have previously shown the influence of ERCC1 expression upon survival rates and benefit of cisplatin-based chemotherapy in patients with resected non-small-cell lung cancer (NSCLC). However, little is known about the molecular characteristics of ERCC1-positive and ERCC1-negative tumors. Experimental Design: We took advantage of a cohort of 91 patients with resected NSCLC, for which we had matched frozen and paraffin-embedded samples to explore the comparative molecular portraits of ERCC1-positive and ERCC1-negative tumors of NSCLC. We carried out a global molecular analysis including assessment of ERCC1 expression levels by using both immunohistochemistry (IHC) and quantitative reverse transcriptase PCR (qRT-PCR), genomic instability, global gene and miRNA expression, and sequencing of selected key genes involved in lung carcinogenesis. Results: ERCC1 protein and mRNA expression were significantly correlated. However, we observed several cases with clear discrepancies. We noted that ERCC1-negative tumors had a higher rate of genomic abnormalities versus ERCC1-positive tumors. ERCC1-positive tumors seemed to share a common DNA damage response (DDR) phenotype with the overexpression of seven genes linked to DDR. The miRNA expression analysis identified miR-375 as significantly underexpressed in ERCC1-positive tumors. Conclusions: Our data show inconsistencies in ERCC1 expression between IHC and qRT-PCR readouts. Furthermore, ERCC1 status is not linked to specific mutational patterns or frequencies. Finally, ERCC1negative tumors have a high rate of genomic aberrations that could consequently influence prognosis in patients with resected NSCLC. Clin Cancer Res; 17(17); 5562-72.

  • 30.
    Gantelius, Jesper
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Novel diagnostic microarray assay formats towards comprehensive on-site analysis2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Advances in molecular methods for analyzing DNA, RNA and proteins in humans as well as in other animals, plants, fungi, bacteria or viruses have greatly increased the resolution with which we can study life’s complexity and dynamics on earth. While genomic, transcriptomic and proteomic laboratory tools for molecular diagnosis of disease are rapidly becoming more comprehensive, the access to such advanced yet often expensive and centralized procedures is limited. There is a great need for rapid and comprehensive diagnostic methods in low-resource settings or contexts where a person can not or will not go to a hospital or medical laboratory, yet where a clinical analysis is urgent.

    In this thesis, results from development and characterization of novel technologies for DNA and protein microarray analysis are presented. Emphasis is on methods that could provide rapid, cost-effective and portable analysis with convenient readout and retained diagnostic accuracy. The first study presents a magnetic bead-based approach for DNA microarray analysis for a rapid visual detection of single nucleotide polymorphisms. In the second work, magnetic beads were used as detection reagents for rapid differential detection of presence of pestiviral family members using a DNA oligonucleotide microarray with read-out by means of a tabletop scanner or a digital camera. In paper three, autoimmune responses from human sera were detected on a protein autoantigen microarray, again by means of magnetic bead analysis. Here, special emphasis was made in comprehensively comparing the performance of the magnetic bead detection to common fluorescence-based detection. In the fourth study, an immunochromatographic lateral flow protein microarray assay is presented for application in the classification of contagious pleuropneumonia from bovine serum samples. The analysis could be performed within 10 minutes using a table top scanner, and the performance of the assay was shown to be comparable to that of a cocktail ELISA. In the fifth paper, the lateral flow microarray framework is investigated in further detail by means of experiments and numerical simulation. It was found that downstream effects play an important role, and the results further suggest that the downstream binding profiles may find use in simple affinity evaluation.

  • 31. Garousi, Javad
    et al.
    Lindbo, Sarah
    KTH, School of Biotechnology (BIO), Protein Technology.
    Mitran, Bogdan
    Buijs, Jos
    Vorobyeva, Anzhelika
    Orlova, Anna
    Tolmachev, Vladimir
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 14780Article in journal (Refereed)
    Abstract [en]

    ABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins. In this study we performed a comparative evaluation of the anti-HER2 ADAPT having an aspartate-glutamate-alanine-valine-aspartate-alanine-asparagine-serine (DEAVDANS) N-terminal sequence and labeled at C-terminus with (99)mTc using a cysteine-containing peptide based chelator, glycine-serine-serine-cysteine (GSSC), and a similar variant labeled with In-111 using a maleimido derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Both (99)mTc-DEAVDANS-ADAPT6-GSSC and In-111-DEAVDANS-ADAPT6-GSSC-DOTA accumulated specifically in HER2-expressing SKOV3 xenografts. The tumor uptake of both variants did not differ significantly and average values were in the range of 19-21% ID/g. However, there was an appreciable variation in uptake of conjugates in normal tissues that resulted in a notable difference in the tumor-to-organ ratios. The In-111-DOTA label provided 2-6 fold higher tumor-to-organ ratios than (99)mTc-GSSC and is therefore the preferable label for ADAPTs.

  • 32.
    Guo, Maoxiang
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Hernández-Neuta, Iván
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    Madaboosi, Narayanan
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    Nilsson, Mats
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Efficient DNA-assisted synthesis of trans-membrane gold nanowires2018In: Microsystems & Nanoengineering, ISSN 2055-7434, Vol. 4, p. 1-8, article id UNSP 17084Article in journal (Refereed)
    Abstract [en]

    Whereas electric circuits and surface-based (bio)chemical sensors are mostly constructed in-plane due to ease of manufacturing, 3D microscale and nanoscale structures allow denser integration of electronic components and improved mass transport of the analyte to (bio)chemical sensor surfaces. This work reports the first out-of-plane metallic nanowire formation based on stretching of DNA through a porous membrane. We use rolling circle amplification (RCA) to generate long single-stranded DNA concatemers with one end anchored to the surface. The DNA strands are stretched through the pores in the membrane during liquid removal by forced convection. Because the liquid–air interface movement across the membrane occurs in every pore, DNA stretching across the membrane is highly efficient. The stretched DNA molecules are transformed into trans-membrane gold nanowires through gold nanoparticle hybridization and gold enhancement chemistry. A 50 fM oligonucleotide concentration, a value two orders of magnitude lower than previously reported for flat surface-based nanowire formation, was sufficient for nanowire formation. We observed nanowires in up to 2.7% of the membrane pores, leading to an across-membrane electrical conductivity reduction from open circuit to o20 Ω. The simple electrical read-out offers a high signal-to-noise ratio and can also be extended for use as a biosensor due to the high specificity and scope for multiplexing offered by RCA.

  • 33.
    Gustavsson, Martin
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Do, T. -H
    Lüthje, P.
    Tran, N. T.
    Brauner, A.
    Samuelson, Patrik
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Truong, N. H.
    Larsson, Gen
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Improved cell surface display of Salmonella enterica serovar Enteritidis antigens in Escherichia coli2015In: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 14, no 1, article id 47Article in journal (Refereed)
    Abstract [en]

    Background: Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the β-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity. Results: H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8. Conclusions: We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.

  • 34. Haab, B. B.
    et al.
    Paulovich, A. G.
    Leigh Anderson, N.
    Clark, A. M.
    Downing, G. J.
    Hermajakob, H.
    LaBaer, J.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    A reagent resource to identify proteins and peptides of interest for the cancer community2006In: Molecular and Cellular Proteomics, ISSN 1535-9476, Vol. 5, no 10, p. 1996-2007Article in journal (Refereed)
    Abstract [en]

    On the basis of discussions with representatives from all sectors of the cancer research community, the National Cancer Institute (NCI) recognizes the immense opportunities to apply proteomics technologies to further cancer research. Validated and well characterized affinity capture reagents (e.g. antibodies, aptamers, and affibodies) will play a key role in proteomics research platforms for the prevention, early detection, treatment, and monitoring of cancer. To discuss ways to develop new resources and optimize current opportunities in this area, the NCI convened the "Proteomic Technologies Reagents Resource Workshop" in Chicago, IL on December 12-13, 2005. The workshop brought together leading scientists in proteomics research to discuss model systems for evaluating and delivering resources for reagents to support MS and affinity capture platforms. Speakers discussed issues and identified action items related to an overall vision for and proposed models for a shared proteomics reagents resource, applications of affinity capture methods in cancer research, quality control and validation of affinity capture reagents, considerations for target selection, and construction of a reagents database. The meeting also featured presentations and discussion from leading private sector investigators on state-of-the-art technologies and capabilities to meet the user community's needs. This workshop was developed as a component of the NCI's Clinical Proteomics Technologies Initiative for Cancer, a coordinated initiative that includes the establishment of reagent resources for the scientific community. This workshop report explores various approaches to develop a framework that will most effectively fulfill the needs of the NCI and the cancer research community.

  • 35.
    Hedin, Eva M. K.
    et al.
    KTH, School of Biotechnology (BIO), Biochemistry.
    Hoyrup, P.
    Patkar, S. A.
    Vind, J.
    Svendsen, A.
    Hult, Karl
    KTH, School of Biotechnology (BIO), Biochemistry.
    Implications of surface charge and curvature for the binding orientation of Thermomyces lanuginosus lipase on negatively charged or zwitterionic phospholipid vesicles as studied by ESR spectroscopy2005In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 44, no 50, p. 16658-16671Article in journal (Refereed)
    Abstract [en]

    The triglyceride lipase (EC 3.1.1.3) Thermomyces lanuginosus lipase (TLL) binds with high affinity to unilamellar phospholipid vesicles that serve as a diluent interface for both lipase and substrate, but it displays interfacial activation on only small and negatively charged such vesicles [Cajal, Y., et al. (2000) Biochemistry 39, 413-423]. The productive-mode binding orientation of TLL at the lipid-water interface of small unilamellar vesicles (SUV) consisting of 1-palmitoyl-2-oleoyi-sn-glycero-3-phosphati-dylglycerol (POPG) was previously determined using electron spin resonance (ESR) spectroscopy in combination with site-directed spin-labeling [Hedin, E. M. K., et al. (2002) Biochemistry 41, 1418514196]. In our investigation, we have studied the interfacial orientation of TLL when bound to large unilamellar vesicles (LUV) consisting of POPG, and bound to SUV consisting of 1-palmitoyl-2-oleoylsn-glycero-3-phosphatidylcholine (POPC). Eleven single-cysteine TLL mutants were spin-labeled as previously described, and studied upon membrane binding using the water soluble spin-relaxation agent chromium(III) oxalate (Crox). Furthermore, dansyl-labeled vesicles revealed the intermolecular fluorescence quenching efficiency between each spin-label positioned on TLL, and the lipid membrane. ESR exposure and fluorescence quenching data show that TILL associates closer to the negatively charged PG surface than the zwitterionic PC surface, and binds to both POPG LUV and POPC SUV predominantly through the concave backside of TLL opposite the active site, as revealed by the contact residues K74C-SL, R209C-SL, and T192C-SL. This orientation is significantly different compared to that on the POPG SUV, and might explain the differences in activation of the lipase. Evidently, both the charge and accessibility (curvature) of the vesicle surface determine the TLL orientation at the phospholipid interface.

  • 36.
    Hedin, Eva M. K.
    et al.
    KTH, Superseded Departments, Biotechnology.
    Hult, Karl
    KTH, Superseded Departments, Biochemistry and Biotechnology.
    Mouritsen, Ole G.
    Hoyrup, P.
    Low microwave-amplitude ESR spectroscopy: Measuring spin-relaxation interactions of moderately immobilized spin labels in proteins2004In: Journal of Biochemical and Biophysical Methods, ISSN 0165-022X, E-ISSN 1872-857X, Vol. 60, no 2, p. 117-138Article in journal (Refereed)
    Abstract [en]

    Electron spin resonance (ESR) spectroscopy in combination with site-directed spin labeling (SDSL) is a powerful tool for determining protein structure, dynamics and interactions. We report here a method for determining interactions between spin labels and paramagnetic relaxation agents, which is performed under subsaturating conditions. The low microwave-field amplitude employed (h(1) < 0.36 G) only requires standard, commercially available ESR equipment. The effect of relaxation enhancement on the spin-spin-relaxation time, T-2e, is measured by this method, and compared to classical progressive power saturation performed on a free spin label, (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl)methanethiosulfonate (MTSL), and a spin-labeled protein (Thermomyces lanuginosa lipase, TLL-1252C), employing the water-soluble relaxation agent chromium(III) oxalate (Crox) in concentrations between 0-10 mM. The low-amplitude theory showed excellent agreement with that of classical power saturation in quantifying Crox-induced relaxation enhancement. Low-amplitude measurements were then performed using a standard resonator, with Crox, on 11 spin-labeled TLL mutants displaying rotational correlation times in the motional narrowing regime. All spin-labeled proteins exhibited significant changes in T-2e. We postulate that this novel method is especially suitable for studying moderately immobilized spin labels, such as those positioned at exposed sites in a protein. This method should prove useful for research groups with access to any ESR instrumentation.

  • 37.
    Hedin, Eva. M. K.
    et al.
    KTH, Superseded Departments, Biotechnology.
    Patkar, S. A.
    KTH, Superseded Departments, Biotechnology.
    Vind, J.
    KTH, Superseded Departments, Biotechnology.
    Svendsen, A.
    KTH, Superseded Departments, Biotechnology.
    Hult, Karl
    KTH, Superseded Departments, Biochemistry and Biotechnology.
    Berglund, Per
    KTH, Superseded Departments, Biochemistry and Biotechnology.
    Selective reduction and chemical modification of oxidized lipase cysteine mutants2002In: Canadian journal of chemistry (Print), ISSN 0008-4042, E-ISSN 1480-3291, Vol. 80, no 6, p. 529-539Article in journal (Refereed)
    Abstract [en]

    Thirteen single-cysteine mutants of the 33 kDa fungal triacylglycerol lipase Thermomyces (formerly Humicola) lanuginosa lipase (TLL, EC 3.1.1.3) Were produced and characterized for the purpose of site-directed chemical modification with spectroscopic reporter groups. All cysteine mutants were found to be predominantly blocked by oxidation to disulfides with endogenous cysteine during production. The fraction of lipase molecules with free sulfhydryl groups was analyzed by labeling with N-biotinylaminoethyl methanethiosulfonate, followed by a novel dot-blot method based on biotin-streptavidin interactions. A non-invasive method for the reduction of the introduced cysteine was elaborated for this protein containing three native disulfide bridges. The site-specifically reduced TLL mutants were then labeled with the sulfhydryl-specific reagents 2-(5-dimethylaminonaphth-1-ylsulfonamido)ethyl methanethiosulfonate or (1-oxyl-2,2,5,5-tetramethyl-Delta(3)-pyrroline-3-methyl) methanethiosulfonate, and studied by fluorescence and electron spin resonance (ESR) spectroscopy.

  • 38.
    Heusser, Stephanie A.
    et al.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Lycksell, Marie
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Wang, Xueqing
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    McComas, Sarah E.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Howard, Rebecca J.
    Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Lindahl, Erik
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, Centres, Science for Life Laboratory, SciLifeLab. Stockholm Univ, Dept Biochem & Biophys, S-11419 Stockholm, Sweden.;Stockholm Univ, Sci Life Lab, S-17165 Solna, Sweden..
    Allosteric potentiation of a ligand-gated ion channel is mediated by access to a deep membrane-facing cavity2018In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 42, p. 10672-10677Article in journal (Refereed)
    Abstract [en]

    Theories of general anesthesia have shifted in focus from bulk lipid effects to specific interactions with membrane proteins. Target receptors include several subtypes of pentameric ligand-gated ion channels; however, structures of physiologically relevant proteins in this family have yet to define anesthetic binding at high resolution. Recent cocrystal structures of the bacterial protein GLIC provide snapshots of state-dependent binding sites for the common surgical agent propofol (PFL), offering a detailed model system for anesthetic modulation. Here, we combine molecular dynamics and oocyte electrophysiology to reveal differential motion and modulation upon modification of a transmembrane binding site within each GLIC subunit. WT channels exhibited net inhibition by PFL, and a contraction of the cavity away from the pore-lining M2 helix in the absence of drug. Conversely, in GLIC variants exhibiting net PFL potentiation, the cavity was persistently expanded and proximal to M2. Mutations designed to favor this deepened site enabled sensitivity even to subclinical concentrations of PFL, and a uniquely prolonged mode of potentiation evident up to similar to 30 min after washout. Dependence of these prolonged effects on exposure time implicated the membrane as a reservoir for a lipid-accessible binding site. However, at the highest measured concentrations, potentiation appeared to be masked by an acute inhibitory effect, consistent with the presence of a discrete, water-accessible site of inhibition. These results support a multisite model of transmembrane allosteric modulation, including a possible link between lipid- and receptor-based theories that could inform the development of new anesthetics.

  • 39. Hu, Francis Jingxin
    et al.
    Lundqvist, Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Rockberg, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    SAMURAI (Solid-phase Assisted Mutagenesis by Uracil Restricted Ablation In vitro) for Antibody Affinity Maturation and Paratope MappingManuscript (preprint) (Other academic)
    Abstract [en]

    Mutagenesis libraries are essential for combinatorial protein engineering. Despite improve- ments in gene synthesis and directed mutagenesis, current methodologies still have limitations regarding the synthesis of intact antibody scFv genes and simultaneous diversification of all six CDRs. Here, we de- scribe the generation of mutagenesis libraries for antibody affinity maturation, using a cell-free solid-phase technique for annealing of single-strand mutagenic oligonucleotides. This procedure consists of PCR-based incorporation of uracil into a wild-type template, bead-based capture, and elution of single-strand DNA, and in vitro uracil excision enzyme based degradation of the template DNA. Our approach enabled rapid (8 hours) mutagenesis and automated cloning of 50 position specific alanine mutants for mapping of a scFv antibody paratope. We further exemplify our method by generating affinity maturation libraries with di- versity introduced in critical, nonessential, or all CDR positions randomly. Assessment with Illumina deep sequencing showed >99% functional diversity in two libraries and the ability to diversify all CDR positions simultaneously. Selections of the libraries with bacterial display and deep sequencing evaluation of the selection output showed that diversity introduced in non-essential positions allowed quicker enrichment of improved binders compared to the other two diversification strategies.

  • 40.
    Hua, Weijie
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry.
    Gao, Bin
    KTH, School of Biotechnology (BIO), Theoretical Chemistry.
    Li, Shuhua
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry.
    Luo, Yi
    KTH, School of Biotechnology (BIO), Theoretical Chemistry.
    X-ray absorption spectra of graphene from first-principles simulations2010In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 82, no 15, p. 155433-Article in journal (Refereed)
    Abstract [en]

    Near edge x-ray absorption fine-structure spectra of graphenes are calculated using hybrid density-functional theory with the equivalent core hole approximation, aiming to resolve the ongoing debate on the interpretation of corresponding experimental spectra. Effects of size, stacking, edges, and defects on the spectra have been analyzed in detail for both C 1s-pi* and C 1s-sigma* transitions. The infinite graphene sheet has been modeled by graphene nanoribbons of different size. The size dependence and convergence of the spectra have been revealed. It is found that the pi-pi interaction between layers have mainly effects on the C 1s-pi* transitions in two different energy regions. The stacking effect smears out the double-peaks structure of the first main pi* peak around 285 eV and results in blueshift of the second pi* structure by almost 2 eV. The calculations show that the pi spectrum of hydrogen saturated edge carbons is redshifted with respect to the central ones and that a new weak sigma* peak around 288 eV appears. The presence of defects can also introduce new spectral features in both pi and sigma regions.

  • 41. Huang, M.
    et al.
    Bao, J.
    Hallström, Björn M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Petranovic, D.
    Nielsen, Jens
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Efficient protein production by yeast requires global tuning of metabolism2017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, no 1, article id 1131Article in journal (Refereed)
    Abstract [en]

    The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular, altered energy metabolism resulting in reduced respiration and increased fermentation, as well as balancing of amino-acid biosynthesis and reduced thiamine biosynthesis seem to be particularly important. We confirm our findings by inverse engineering and physiological characterization and show that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion.

  • 42.
    Häggmark, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Neuroproteomic profiling of human body fluids2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis provides results from affinity based studies where human body fluids were profiled to find markers for neurological diseases. Both proteins and autoantibodies were analysed using microarray technologies that can profile hundreds of analytes and hundreds of samples in parallel using small sample volumes. A central element in this work was to develop and apply new methods to study cerebrospinal fluid (CSF), which is the fluid in direct contact with the brain. CSF contains proteins reflecting the physiological state of the central nervous system and therefore offers a unique insight into proteins associated to neurological disorders. As a complement to CSF, bloodderived samples such as serum and plasma, were also investigated as these represent potential sources of disease related proteins. The work presented here summarises the development of assay protocols to study protein and autoantibodies in CSF and blood using planar and bead-based microarrays.

    In Paper I, an antibody-based protocol was developed to enable multiplexed protein profiling in CSF. The protocol was then applied for a first analysis within multiple sclerosis (MS) patients. In Paper II, the results were further evaluated in additional CSF as well as plasma samples. Based on the CSF analysis we found two proteins associated to MS; GAP43, a protein related to disease progression and SERPINA3, a protein involved in inflammation. In addition, four other proteins; IRF8, METTL14, IL7 and SLC30A7, were found to have altered plasma levels between the patient groups. The expression of these proteins were further investigated by immunofluorescent staining of human brain tissue, revealing differential localisation of proteins in diseased and healthy brain. In Paper III, a study on extensive protein profiling of plasma in the context of another neurodegenerative disorder, amyotrophic lateral sclerosis (ALS), is described. The levels of three proteins, namely NEFM, RGS18 and SCL25A20, were found to be elevated in ALS patients compared to controls. Among these, NEFM also indicated association to disease subtype as the levels were elevated in patients with definite compared to suspected diagnosis.

    In addition to antibodies, we also utilised antigens on microarrays to screen for the presence of autoantibodies in body fluids. In Paper IV, a strategy for this analysis was developed using protein fragments and two types of microarrays. This strategy was then applied for profiling of the autoantibody repertoire of MS patients, revealing 51 protein fragments with potential disease relevance. Interestingly, comparison of plasma and CSF samples obtained from the same patients indicated high concordance of antibodies between the two body fluids. In Paper V, a similar strategy was applied to narcolepsy, another neurological disorder. Our investigation of antibodies in serum revealed higher reactivity towards METTL22, NT5C1A and TMEM134 compared to controls in two independent sample materials.

    In conclusion, the presented work constitutes a framework of proteomic assays for enhanced exploration of proteins and autoantibodies in neuroscience. Moreover, we have reported identification of several potential disease markers to be further investigated within neurological disorders.

  • 43.
    Ibrahim, Ahmed
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hugerth, Luisa W.
    Hases, Linnea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Saxena, Ashish
    Seifert, Maike
    Thomas, Quentin Angelo Pierre
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gustafsson, Jan-Åke
    Engstrand, Lars
    Williams, Cecilia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Colitis-induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity2019In: International Journal of Cancer, ISSN 0020-7136, E-ISSN 1097-0215, Vol. 144, no 12, p. 3086-3098Article in journal (Refereed)
    Abstract [en]

    Chronic inflammation of the colon (colitis) is a risk factor for colorectal cancer (CRC). Hormone-replacement therapy reduces CRC incidences, and the estrogen receptor beta (ERβ/ESR2) has been implicated in this protection. Gut microbiota is altered in both colitis and CRC and may influence the severity of both. Here we test the hypothesis that intestinal ERβ impacts the gut microbiota. Mice with and without intestine-specific deletion of ERβ (ERβKOVil ) were generated using the Cre-LoxP system. Colitis and CRC were induced with a single intraperitoneal injection of azoxymethane (AOM) followed by administration of three cycles of dextran sulfate sodium (DSS) in drinking water. The microbiota population were characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples (N = 39). Differences in the microbiota due to AOM/DSS and absence of ERβ were identified through bioinformatic analyses of the 16S-Seq data, and the distribution of bacterial species was corroborated using qPCR. We demonstrate that colitis-induced CRC reduced the gut microbiota diversity and that loss of ERβ enhanced this process. Further, the Bacteroidetes genus Prevotellaceae_UCG_001 was overrepresented in AOM/DSS mice compared to untreated controls (3.5-fold, p = 0.004), and this was enhanced in females and in ERβKOVil mice. Overall, AOM/DSS enriched for microbiota impacting immune system diseases and metabolic functions, and lack of ERβ in combination with AOM/DSS enriched for microbiota impacting carbohydrate metabolism and cell motility, while reducing those impacting the endocrine system. Our data support that intestinal ERβ contributes to a more favorable microbiome that could attenuate CRC development.

  • 44. Illarionova, Nina Borisovna
    et al.
    Gunnarson, Eli
    Zelenina, Marina
    Kamali-Zare, Padideh
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Brismar, Hjalmar
    KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
    Bondar, Alexander
    Zelenin, Sergey
    Aperia, Anita
    Identification and functional significance of a brain aquaporin-4/Na+,K+-ATPase/mGluR5 macromolecular complex2008In: The FASEB Journal, ISSN 0892-6638, E-ISSN 1530-6860, Vol. 22Article in journal (Other academic)
  • 45.
    Jacobsson, Micael
    et al.
    Uppsala universitet, Avdelningen för organisk farmaceutisk kemi.
    Lidén, Per
    Stjernschantz, Eva
    Boström, Henrik
    Stockholm University, Sweden.
    Norinder, Ulf
    Improving structure-based virtual screening by multivariate analysis of scoring data2003In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 46, no 26, p. 5781-5789Article in journal (Refereed)
    Abstract [en]

    hree different multivariate statistical methods, PLS discriminant analysis, rule-based methods, and Bayesian classification, have been applied to multidimensional scoring data from four different target proteins: estrogen receptor alpha (ERalpha), matrix metalloprotease 3 (MMP3), factor Xa (fXa), and acetylcholine esterase (AChE). The purpose was to build classifiers able to discriminate between active and inactive compounds, given a structure-based virtual screen. Seven different scoring functions were used to generate the scoring matrices. The classifiers were compared to classical consensus scoring and single scoring functions. The classifiers show a superior performance, with rule-based methods being most effective. The precision of correctly predicting an active compound is about 90% for three of the targets and about 25% for acetylcholine esterase. On the basis of these results, a new two-stage approach is suggested for structure-based virtual screening where limited activity information is available.

  • 46. Jakobsen, Lis
    et al.
    Vanselow, Katja
    Skogs, Marie
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Toyoda, Yusuke
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Poser, Ina
    Falkenby, Lasse G.
    Bennetzen, Martin
    Westendorf, Jens
    Nigg, Erich A.
    Uhlen, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Hyman, Anthony A.
    Andersen, Jens S.
    Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods2011In: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 30, no 8, p. 1520-1535Article in journal (Refereed)
    Abstract [en]

    Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP-SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non-specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.

  • 47.
    Jönsson, Håkan
    et al.
    KTH, School of Biotechnology (BIO), Nano Biotechnology (closed 20130101).
    Svahn Andersson, Helene
    KTH, School of Biotechnology (BIO), Nano Biotechnology (closed 20130101).
    Tröpfchen-Mikrofluidik für die Einzelzellanalyse2012In: Angewandte Chemie, ISSN 0044-8249, E-ISSN 1521-3757, Angewandte Chemie, Vol. 124, no 49, p. 12342-12359Article in journal (Refereed)
    Abstract [de]

    Die tröpfchenbasierte Mikrofluidik dient der Isolierung und Manipulation von einzelnen Zellen und Reagentien innerhalb von monodispersen, pikolitergroßen Flüssigkapseln bei einem Umsatz von tausenden Tröpfchen pro Sekunde. Diese Qualitäten machen die Tröpfchen‐Mikrofluidik geeignet für viele Anforderungen der Einzelzellanalyse. Durch die Monodispersität lässt sich die Konzentration in den Tröpfchen quantitativ einstellen. Die Tröpfchen bieten der Zelle und ihrer unmittelbaren Umgebung ein isoliertes Kompartiment, und bei einem Durchsatz von tausenden Tröpfchen pro Sekunde ist es möglich, zehntausende bis millionen verkapselte Zellen zu prozessieren. Heterogene Zellpopulationen lassen sich somit exakt beschreiben oder seltene Zellarten identifizieren. Das kleine Volumen der Tröpfchen macht auch sehr große Screenings ökonomisch machbar. Dieser Aufsatz gibt einen Überblick über den aktuellen Stand der Einzelzellanalyse durch die Tröpfchen‐Mikrofluidik und nennt Beispiele, bei denen sie biologische Vorgänge besser verstehen hilft.

  • 48.
    Khorshidi, Mohammad Ali
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Live Single Cell Imaging and Analysis Using Microfluidic Devices2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Today many cell biological techniques study large cell populations where an average estimate of individual cells’ behavior is observed. On the other hand, single cell analysis is required for studying functional heterogeneities between cells within populations. This thesis presents work that combines the use of microfluidic devices, optical microscopy and automated image analysis to design various cell biological assays with single cell resolution including cell proliferation, clonal expansion, cell migration, cell-cell interaction and cell viability tracking. In fact, automated high throughput single cell techniques enable new studies in cell biology which are not possible with conventional techniques.

    In order to automatically track dynamic behavior of single cells, we developed a microwell based device as well as a droplet microfluidic platform. These high throughput microfluidic assays allow automated time-lapse imaging of encapsulated single cells in micro droplets or confined cells inside microwells. Algorithms for automatic quantification of cells in individual microwells and micro droplets are developed and used for the analysis of cell viability and clonal expansion. The automatic counting protocols include several image analysis steps, e.g. segmentation, feature extraction and classification. The automatic quantification results were evaluated by comparing with manual counting and revealed a high success rate. In combination these automatic cell counting protocols and our microfluidic platforms can provide statistical information to better understand behavior of cells at the individual level under various conditions or treatments in vitro exemplified by the analysis of function and regulation of immune cells. Thus, together these tools can be used for developing new cellular imaging assays with resolution at the single cell level.

    To automatically characterize transient migration behavior of natural killer (NK) cells compartmentalized in microwells, we developed a method for single cell tracking. Time-lapse imaging showed that the NK cells often exhibited periods of high motility, interrupted with periods of slow migration or complete arrest. These transient migration arrest periods (TMAPs) often overlapped with periods of conjugations between NK cells and target cells. Such conjugation periods sometimes led to cell-mediated killing of target cells. Analysis of cytotoxic response of NK cells revealed that a small sub-class of NK cells called serial killers was able to kill several target cells. In order to determine a starting time point for cell-cell interaction, a novel technique based on ultrasound was developed to aggregate NK and target cells into the center of the microwells. Therefore, these assays can be used to automatically and rapidly assess functional and migration behavior of cells to detect differences between health and disease or the influence of drugs.

    The work presented in this thesis gives good examples of how microfluidic devices combined with automated imaging and image analysis can be helpful to address cell biological questions where single cell resolution is necessary. 

  • 49.
    Koeck, P. J. B.
    et al.
    KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Structural Biotechnology.
    Karshikoff, A.
    Limitations of the linear and the projection approximations in three-dimensional transmission electron microscopy of fully hydrated proteins2015In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 259, no 3, p. 197-209Article in journal (Refereed)
    Abstract [en]

    We establish expressions for the linear and quadratic terms in the series expansion of the phase and the phase and amplitude object description of imaging thin specimens by transmission electron microscopy. Based on these expressions we simulate the corresponding contributions to images of unstained protein complexes of varying thickness and arrive at an estimate for how much each term contributes to the contrast of the image. From this we can estimate a maximum specimen thickness for which the weak phase and the weak amplitude and phase object approximation (and therefore linear imaging) is still reasonably accurate. When discussing thick specimens it is also necessary to consider limitations due to describing the image as a filtered projection of the specimen, since the different layers of the specimen are not imaged with the same defocus value. We therefore compared simulations based on the projection approximation with the more accurate multislice model of image formation. However, we find that the errors due to nonlinear image contributions are greater than those due to the defocus gradient for the defocus values chosen for the simulations. Finally, we study how the discussed nonlinear image contributions and the defocus gradient affect the quality of three-dimensional reconstructions. We find that three-dimensional reconstructions reach high resolution when at the same time exhibiting localized systematic structural errors. Non-Technical Abstract Cryo transmission electron microscopy and three-dimensional reconstruction can be used to determine a three-dimensional model of a protein molecule. In the mathematical methods used for three-dimensional reconstruction assumptions are made about a linear relationship between the images recorded in the electron microscope and the objects being imaged. In this paper we investigate with computer simulations at what specimen thickness these assumptions start breaking down and what sort of errors can be expected in the three-dimensional reconstructions when the assumptions are not valid anymore.

  • 50.
    Kronqvist, Nina
    et al.
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Malm, Magdalena
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics.
    Hjelm, Barbara
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Ståhl, Stefan
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Löfblom, John
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Staphylococcal surface display in combinatorial protein engineering and epitope mapping of antibodies2010In: Recent Patents on Biotechnology, ISSN 1872-2083, Vol. 4, no 3, p. 171-182Article in journal (Refereed)
    Abstract [en]

    The field of combinatorial protein engineering for generation of new affinity proteins started in the mid 80s by the development of phage display. Although phage display is a prime example of a simple yet highly efficient method, manifested by still being the standard technique 25 years later, new alternative technologies are available today. One of the more successful new display technologies is cell display. Here we review the field of cell display for directed evolution purposes, with focus on a recently developed method employing Gram-positive staphylococci as display host. Patents on the most commonly used cell display systems and on different modifications as well as specific applications of these systems are also included. General strategies for selection of new affinity proteins from cell-displayed libraries are discussed, with detailed examples mainly from studies on the staphylococcal display system. In addition, strategies for characterization of recombinant proteins on the staphylococcal cell surface, with an emphasis on an approach for epitope mapping of antibodies, are included.

123 1 - 50 of 119
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf