Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Albertsson, A-C.
    et al.
    Karlsson, S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Aspects of biodeterioration of inert and degradable polymers1993In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 31, no 3, p. 161-170Article in journal (Refereed)
  • 2.
    Atarijabarzadeh, Sevil
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Strömberg, Emma
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Inhibition of biofilm formation on silicone rubber samples using various antimicrobial agents2011In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 65, no 8, p. 1111-1118Article in journal (Refereed)
    Abstract [en]

    High-temperature-cured silicone rubber samples (silicone rubber (SIR) based on polydimethylsiloxane (PDMS)) and SIR samples containing three different antimicrobial agents, sodium benzoate (NaB), DCOIT (4,5 Dichloro-2-octyl-2H-isothiazolone-one) and p-aminobenzoic acid (PABA) were inoculated with fungal spore suspensions and incubated for 28 days at 29 +/- 1 degrees C and >= 90% humidity, according to the ISO 846:1997(E) protocol. Prior to the biodegradation test, a powder test was conducted to study the efficacy of the chosen antimicrobial compounds and to determine the correct concentration of the compounds for sample preparation. The extent of the microbial growth was studied visually and by Scanning Electron Microscopy (SEM). Changes in surface hydrophobicity and surface chemical composition were studied by contact angle measurements and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Microbial growth and biofilm formation were observed on the surface of reference samples. DCOIT was the most effective antimicrobial agent, as demonstrated by the lack of microbial growth and unaltered surface hydrophobicity. On the surface of samples containing NaB, an initiation of microbial growth and therefore a slight change in surface hydrophobicity was observed. PABA did not inhibit the fungal growth.

  • 3. Råberg, Ulrika
    et al.
    Terziev, Nasko
    Land, Carl Johan
    Early soft rot colonization of Scots sapwood pine in above-ground exposure2009In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 63, no 2, p. 236-240Article in journal (Refereed)
    Abstract [en]

    The early colonization of Scots pine (Pinus sylvestris L) sapwood exposed above ground (staple bed) was studied. Two different types of exposures were used, one in an open field and the other in a shaded field. Decay type and degree of degradation due to soft rot and mass and strength loss of wood were correlated. Fungal species in Scots pine sapwood were identified by sequencing, using the fungal nuclear ribosomal DNA (nrDNA) after 24 months. The most abundant decay type found was soft rot, which also agreed with the mass loss (7-8%). Pine sapwood did not differ significantly between the two sites regarding the average mass loss during the time of exposure. The early colonization of wood by soft rot fungi together with mass loss indicates that this fungal type might be more common in above-ground conditions than recognized earlier.

  • 4.
    Strömberg, Emma
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    The effect of biodegradation on surface and bulk property changes of polypropylene, recycled polypropylene and polylactide biocomposites2009In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 63, no 8, p. 1045-1053Article in journal (Refereed)
    Abstract [en]

    Biocomposites were subject to exposure to a mixture of fungi and algae in a microenvironment chamber. Surface and bulk property changes of polypropylene/wood flour, recycled polypropylene/cellulose and polylactide/wood flour were monitored by tensile testing, Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA) and Field Emission Scanning Electron Microscope (FE-SEM). All the biocomposites showed a substantial decrease in toughness after 28 and 56 days of hydrolysis. The ductility increased after 28 and 56 days, but deteriorated after 84 days of hydrolysis. Biofilm formation occurred on all biocomposites even if the polymer itself was inert to biodegradation. The microbial colonization affected mainly the surface properties of polypropylene biocomposites while changes were monitored also in the bulk properties of polylactide biocomposites. The cellulose fibres in the composites gave a more easily colonized surface mainly attributed to water uptake. In the short term perspective, the water uptake offered better conditions for biofilm adhesion, and in the longer perspective the exposure to microorganisms also resulted in mechanical degradation, followed by biodegradation of cellulose. With time this will leave a porous matrix of polypropylene, while biodegradable polymers such as polylactide will degrade in parallel with the fibre part.

  • 5. Treu, Andreas
    et al.
    Bardage, Stig
    Johansson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Trey, Stacy
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Fungal durability of polyaniline modified wood and the impact of a low pulsed electric field2014In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 87, p. 26-33Article in journal (Refereed)
    Abstract [en]

    New wood protection technologies should be effective against biodeterioration and at the same time minimize environmental impact. The present study investigates the effect of polyaniline modification of wood and the effect of a pulsed electric field on fungal protection. The effect of fungi and a pulsed electric field on the conductivity of the modified wood was also measured. It was found that it is possible to polymerize polyaniline particles in-situ homogeneously throughout the wood specimens. The polyaniline particles themselves were not found to be anti-fungal, however when in contact with water they affected the pH drastically and inhibited fungal growth. The wood treatment with polyaniline and the connection to a pulsed electric field were found to be effective in protecting the wood from deterioration when exposed to Postia placenta. The unmodified samples that were connected to a pulsed electric field lost under 10 wt% due to fungal degradation. The combination of polyaniline treatment with the connection to a pulsed electric field showed a slight synergistic effect which resulted in less weight loss due to fungal degradation. However, a more brittle wood structure was observed. Leached and fungal exposed samples showed a significant drop in the conductivity, indicating that the network has broken down slightly.

  • 6. Zhu, X.
    et al.
    Shen, Y.
    Chen, X.
    Hu, Yue O. O.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Xiang, H.
    Tao, J.
    Ling, Y.
    Biodegradation mechanism of microcystin-LR by a novel isolate of Rhizobium sp. TH and the evolutionary origin of the mlrA gene2016In: International Biodeterioration & Biodegradation, ISSN 0964-8305, E-ISSN 1879-0208, Vol. 115, p. 17-25Article in journal (Refereed)
    Abstract [en]

    The frequent presence of microcystin (MC) in eutrophic water bodies worldwide poses a serious threat to ecosystems. Biodegradation has been extensively investigated as a main pathway for MC attenuation, and an mlr-dependent mechanism of MC degradation have been elucidated in detail. However, the evolutionary origin and the distribution of mlr genes in MC-degrading bacteria is poorly understood. In this study, a novel Rhizobium sp. TH, which is the first α-proteobacterial MC-degrading bacterium other than Sphingomonadales, was isolated. Strain TH degraded MC via the mlr-dependent mechanism with a first-order rate constant of 0.18–0.29 h−1 under near-natural conditions. The partial length mlr gene cluster was sequenced, and the function of its key gene, mlrA, was verified by heterologous expression in Escherichia coli. Phylogenetic analyses show that the mlrA gene initially arose in α-proteobacteria by vertical evolution, and the two strains from β- and γ-proteobacteria acquired it by horizontal gene transfer. Therefore, the mlrA gene mainly exists in α-proteobacteria but is seldom present in other bacteria. A pair of primers matching well with mlrA sequences reported so far were designed and could be used to determine the MC-degrading mechanism for novel isolates or to screen for MC-degrading ability among environmental samples.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf