Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Holmgren, Anders
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Norgren, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Zhang, Liming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.
    On the role of the monolignol gamma-carbon functionality in lignin biopolymerization2009In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 70, no 1, p. 147-155Article in journal (Refereed)
    Abstract [en]

    In order to investigate the importance of the monomeric gamma-carbon chemistry in lignin biopolymerization and structure, synthetic lignins (dehydrogenation polymers; DHP) were made from monomers with different degrees of oxidation at the gamma-carbon, i.e., carboxylic acid, aldehyde and alcohol. All monomers formed a polymeric material through enzymatic oxidation. The polymers displayed similar sizes by size exclusion chromatography analyses, but also exhibited some physical and chemical differences. The DHP made of coniferaldehyde had poorer solubility properties than the other DHPs, and through contact angle of water measurement on spin-coated surfaces of the polymeric materials, the DHPs made of coniferaldehyde and carboxylic ferulic acid exhibited higher hydrophobicity than the coniferyl alcohol DHP. A structural characterization with C-13 NMR revealed major differences between the coniferyl alcohol-based polymer and the coniferaldehyde/ferulic acid polymers, such as the predominance of aliphatic double bonds and the lack of certain benzylic structures in the latter cases. The biological role of the reduction at the gamma-carbon during monolignol biosynthesis with regard to lignin polymerization is discussed.

  • 2.
    Hsieh, Yves S. Y.
    et al.
    University of Auckland, New Zealand.
    Harris, Philip J.
    Structures of xyloglucans in primary cell walls of gymnosperms, monilophytes (ferns sensu lato) and lycophytes2012In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 79, p. 87-101Article in journal (Refereed)
    Abstract [en]

    Little is known about the structures of the xyloglucans in the primary cell walls of vascular plants (tracheophytes) other than angiosperms. Xyloglucan structures were examined in 13 species of gymnosperms, 13 species of monilophytes (ferns sensu lato), and two species of lycophytes. Wall preparations were obtained, extracted with 6 M sodium hydroxide, and the extracts treated with a xyloglucan-specific endo-(1→4)-β-glucanase preparation. The oligosaccharides released were analysed by matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry and by high-performance anion-exchange chromatography. The xyloglucan oligosaccharide profiles from the gymnosperm walls were similar to those from the walls of most eudicotyledons and non-commelinid monocotyledons, indicating that the xyloglucans were fucogalactoxyloglucans, containing the fucosylated units XXFG and XLFG. The xyloglucan oligosaccharide profiles for six of the monilophyte species were similar to those of the gymnosperms, indicating they were also fucogalactoxyloglucans. Phylogenetically, these monilophyte species were from both basal and more derived orders. However, the profiles for the other monilophyte species showed various significant differences, including additional oligosaccharides. In three of the species, these additional oligosaccharides contained arabinosyl residues which were most abundant in the profile of Equisetum hyemale. The two species of lycophytes examined, Selaginella kraussiana and Lycopodium cernuum, had quite different xyloglucan oligosaccharide profiles, but neither were fucogalactoxyloglucans. The S. kraussiana profile had abundant oligosaccharides containing arabinosyl residues. The L. cernuum profile indicated the xyloglucan had a very complex structure.

  • 3. Kännaste, A.
    et al.
    Laanisto, L.
    Pazouki, L.
    Copolovici, L.
    Suhorutšenko, M.
    Azeem, Muhammad
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. COMSATS Institute of Information Technology, Pakistan.
    Toom, L.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. University of Tartu, Estonia.
    Niinemets, Ü.
    Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes2018In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 147, p. 80-88Article in journal (Refereed)
    Abstract [en]

    Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish ‘non diterpenoid pines’ ‘high isoabienol pines’ ‘manoyl oxide – isoabienol pines’ and ‘other diterpenoid pines’. ‘Non diterpenoid pines’ ‘high isoabienol pines’ and ‘other diterpenoid pines’ were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented ‘high isoabienol pines’. ‘Manoyl oxide – isoabienol pines’ were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (NM) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar NM in ‘manoyl oxide – isoabienol pines’ and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response.

  • 4.
    Lundborg, Lina
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Fedderwitz, Frauke
    Department of Ecology, Swedish University of Agricultural Sciences.
    Björklund, Niklas
    Department of Ecology, Swedish University of Agricultural Sciences.
    Nordlander, Göran
    Department of Ecology, Swedish University of Agricultural Sciences.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis2016In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 130, p. 99-105Article in journal (Refereed)
    Abstract [en]

    The defense of conifers against phytophagous insects relies to a large extent on induced chemical defenses. However, it is not clear how induced changes in chemical composition influence the meal properties of phytophagous insects (and thus damage rates). The defense can be induced experimentally with methyl jasmonate (MeJA), which is a substance that is produced naturally when a plant is attacked. Here we used MeJA to investigate how the volatile contents of Scots pine (Pinus sylvestris L.) tissues influence the meal properties of the pine weevil (Hylobius abietis (L.)). Phloem and needles (both weevil target tissues) from MeJA-treated and control seedlings were extracted by n-hexane and analyzed by two-dimensional gas chromatography-mass spectrometry (2D GC-MS). The feeding of pine weevils on MeJA-treated and control seedlings were video-recorded to determine meal properties. Multivariate statistical analyses showed that phloem and needle contents of MeJA-treated seedlings had different volatile compositions compared to control seedlings. Levels of the pine weevil attractant (+)-α-pinene were particularly high in phloem of control seedlings with feeding damage. The antifeedant substance 2-phenylethanol occurred at higher levels in the phloem of MeJA-treated than in control seedlings. Accordingly, pine weevils fed slower and had shorter meals on MeJA-seedlings. The chemical compositions of phloem and needle tissues were clearly different in control seedlings but not in the MeJA-treated seedlings. Consequently, meal durations of mixed meals, i.e. both needles and phloem, were longer than phloem meals on control seedlings, while meal durations on MeJA seedlings did not differ between these meal contents. The meal duration influences the risk of girdling and plant death. Thus our results suggest a mechanism by which MeJA treatment may protect conifer seedlings against pine weevils.

  • 5. Moreira, Xoaquin
    et al.
    Lundborg, Lina
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zas, Rafael
    Carrillo-Gavilan, Amparo
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sampedro, Luis
    Inducibility of chemical defences by two chewing insect herbivores in pine trees is specific to targeted plant tissue, particular herbivore and defensive trait2013In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 94, p. 113-122Article in journal (Refereed)
    Abstract [en]

    There is increasing evidence that plants can react to biotic aggressions with highly specific responses. However, few studies have attempted to jointly investigate whether the induction of plant defences is specific to a targeted plant tissue, plant species, herbivore identity, and defensive trait. Here we studied those factors contributing to the specificity of induced defensive responses in two economically important pine species against two chewing insect pest herbivores. juvenile trees of Pious pinaster and P. radiata were exposed to herbivory by two major pest threats, the large pine weevil Hylobius abietis (a bark-feeder) and the pine processionary caterpillar Thaumetopoea pityocampa (a folivore). We quantified in two tissues (stem and needles) the constitutive (control plants) and herbivore-induced concentrations of total polyphenolics, volatile and non-volatile resin, as well as the profile of mono- and sesquiterpenes. Stem chewing by the pine weevil increased concentrations of non-volatile resin, volatile monoterpenes, and (marginally) polyphenolics in stem tissues. Weevil feeding also increased the concentration of non-volatile resin and decreased polyphenolics in the needle tissues. Folivory by the caterpillar had no major effects on needle defensive chemistry, but a strong increase in the concentration of polyphenolics in the stem. Interestingly, we found similar patterns for all these above-reported effects in both pine species. These results offer convincing evidence that induced defences are highly specific and may vary depending on the targeted plant tissue, the insect herbivore causing the damage and the considered defensive compound.

  • 6.
    Mélida, Hugo
    et al.
    Universidad de León.
    García-Angulo, Penélope
    Alonso-Simón, Ana
    Alvarez, Jesús M.
    Acebes, José Luis
    Encina, Antonio
    The phenolic profile of maize primary cell wall changes in cellulose-deficient cell cultures2010In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 71, no 14-15, p. 1684-1689Article in journal (Refereed)
    Abstract [en]

    Cultured maize cells habituated to grow in the presence of the cellulose synthesis inhibitor dichlobenil (DCB) have a modified cell wall in which the amounts of cellulose are reduced and the amounts of arabinoxylan increased. This paper examines the contribution of cell wall-esterified hydroxycinnamates to the mechanism of DCB habituation. For this purpose, differences in the phenolic composition of DCB-habituated and non-habituated cell walls, throughout the cell culture cycle and the habituation process were characterized by HPLC. DCB habituation was accompanied by a net enrichment in cell wall phenolics irrespective of the cell culture phase. The amount of monomeric phenolics was 2-fold higher in habituated cell walls. Moreover, habituated cell walls were notably enriched in p-coumaric acid. Dehydrodimers were 5-6-fold enhanced as a result of DCB habituation and the steep increase in 8,5'-diferulic acid in habituated cell walls would suggest that this dehydrodimer plays a role in DCB habituation. In summary, the results obtained indicate that cell wall phenolics increased as a consequence of DCB habituation, and suggest that they would play a role in maintaining the functionality of a cellulose impoverished cell wall.

  • 7. Nord, Christina L
    et al.
    Menkis, Audrius
    Lendel, Christofer
    Vasaitis, Rimvydas
    Broberg, Anders
    Sesquiterpenes from the saprotrophic fungus Granulobasidium vellereum (Ellis & Cragin) Jülich.2014In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 102, p. 197-204, article id S0031-9422(14)00115-0Article in journal (Refereed)
    Abstract [en]

    Twelve sesquiterpenes comprising either the protoilludane or the rare cerapicane carbon skeletons were obtained from the saprotrophic wood decomposing fungus Granulobasidium vellereum; 2a-hydroxycoprinolone (1), 3-hydroxycoprinolone (2), coprinolone diol B (3), granulodiene A (4), granulodiene B (5), granulone A (6), 8-deoxy-4a-hydroxytsugicoline B (7), granulone B (8), demethylgranulone (9), cerapicolene (10), as well as the known compounds radudiol and Δ(6)-coprinolone. The structures were determined using spectroscopic methods and biosynthetic considerations. Granulone A had growth stimulating effect on the total elongation of lettuce seedlings. None of the isolated compounds showed any antifungal effect.

  • 8.
    Oinonen, Petri
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhang, Liming
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    On the formation of lignin polysaccharide networks in Norway spruce2015In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 111, p. 177-184Article in journal (Refereed)
    Abstract [en]

    In this study we were mirroring suggested in vivo phenomena of lignin-hemicellulose complex formation in vitro, by cross-linking Norway spruce (Picea abies) galactoglucomannans, xylans and lignin moieties to high molecular weight complexes by laccase treatment. We were able to observe the oxidation and cross-linking of non-condensed guaiacyl-type phenolic moieties attached to both of the hemicelluloses by P-31 NMR and size-exclusion chromatography. We suggest that hemicelluloses-lignin complexes form covalently linked structural units during the early stages of lignification via radical enzymatic cross-linking catalyzed by laccase. This work shows that the hemicellulose molecules in wood are covalently linked to two or more lignin units thereby making them suited for forming network structures.

  • 9.
    Zhao, Tao
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Krokene, Paal
    Björklund, Niklas
    Långström, Bo
    Solheim, Halvor
    Christiansen, Erik
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    The influence of Ceratocystis polonica inoculation and methyl jasmonate application on terpene chemistry of Norway spruce, Picea abies2010In: Phytochemistry, ISSN 0031-9422, E-ISSN 1873-3700, Vol. 71, no 11-12, p. 1332-1341Article in journal (Refereed)
    Abstract [en]

    Constitutive and inducible terpene production is involved in conifer resistance against bark beetles and their associated fungi. In this study 72 Norway spruce (Picea abies) were randomly assigned to methyl jasmonate (MJ) application, inoculation with the bluestain fungus Ceratocystis polonica, or no-treatment control. We investigated terpene levels in the stem bark of the trees before treatment, 30 days and one year after treatment using GC-MS and two-dimensional GC (2D-GC) with a chiral column, and monitored landing and attack rates of the spruce bark beetle, Ips typographus, on the trees by sticky traps and visual inspection. Thirty days after fungal inoculation the absolute amount and relative proportion of (+)-3-carene, sabinene, and terpinolene increased and (+)-alpha-pinene decreased. Spraying the stems with MJ tended to generally increase the concentration of most major terpenes with minor alteration to their relative proportions, but significant increases were only observed for (-)-beta-pinene and (-)-limonene. Fungal inoculation significantly increased the enantiomeric ratio of (-)-alpha-pinene and (-)-limonene 1 month after treatment, whereas MJ only increased that of (-)-limonene. One year after treatment, both MJ and fungal inoculation increased the concentration of most terpenes relative to undisturbed control trees, with significant changes in (-)-beta-pinene, (-)-beta-phellandrene and some other compounds. Terpene levels did not change in untreated stem sections after treatment, and chemical induction by MJ and C polonica thus seemed to be restricted to the treated stem section. The enantiomeric ratio of (-)-alpha-pinene was significantly higher and the relative proportions of ( -)-limonene were significantly lower in trees that were attractive to bark beetles compared to unattractive trees. One month after fungal inoculation, the total amount of diterpenes was significantly higher in putative resistant trees with shorter lesion lengths than in putative susceptible trees with longer lesions. Thus, terpene composition in the stem bark may be related to resistance of Norway spruce against I. typographus and C. polonica.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf