Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bayoglu Flener, Esra
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Sundquist, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Field testing of a long-span arch steel culvert during backfilling and in service2005In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 1, no 3, p. 181-188Article in journal (Refereed)
    Abstract [en]

    The paper presents the first part of the in-situ measurements and data analyses for the tests conducted during backfilling and during service of a long-span corrugated steel culvert railway bridge over Skivarpsan, Rydsgard, Sweden. Static and dynamic tests were carried out measuring strains and displacements. Temperature readings were taken along with the measurements. Comparisons of moments during compaction showed that there is good agreement between test results and theoretical values. The theoretical calculation of the rise of the crown during compaction and the crown moments due to live load seem to be conservative, while the theoretical axial forces agree reasonably with the measured axial forces.

  • 2.
    Bornet, Lucie
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Andersson, Andreas
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Zwolski, Jaroslaw
    Wroclaw University of Technology, Department of Civil Engineering.
    Battini, Jean-Marc
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Influence of the ballasted track on the dynamic properties of a truss railway bridge2015In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 11, no 6, p. 796-803Article in journal (Refereed)
    Abstract [en]

    This article presents numerical and experimental analyses of a steel truss railway bridge. The main interest of this work is that dynamic experiments have been performed before and after the ballasted track was placed on the bridge. Consequently, it has been possible to quantify the effect of the ballast and the rails on the dynamic properties of the bridge. For that, two finite element models, with and without the ballasted track, have been implemented and calibrated using the experimental results. It appears that the ballast gives an additional stiffness of about 25-30% for the lowest three eigenmodes. This additional stiffness can be only partly explained by the stiffness of the ballast. In fact, it seems that this additional stiffness is also due to a change of the support conditions.

  • 3.
    Butt, Ali Azhar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Birgisson, Björn
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Assessment of the attributes based life cycle assessment framework for road projects2015In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980Article in journal (Refereed)
    Abstract [en]

    Number of life cycle assessment (LCA) tools has been suggested for pavements. However, very few have been adopted by the road authorities. Key reasons for this lack of implementation have been the tendency for very broad LCA analyses that include system boundaries considerably beyond the more natural system boundaries associated with road design, construction and maintenance as well as the lack of available LCA tools that have attributes that reflect key road properties. In this paper, a new attributesbased pavement LCA framework is evaluated for use on real road materials. Aggregates from two different sources and the effect of using a warm mix asphalt additive (WMAA) in asphalt mixtures were investigated in the laboratory. Different pavement design alternatives were generated using the laboratory data and analyzed using the road LCA framework. Asphalt production and material transportation were found to be the most energy consuming processes. The results presented showed that having actual pavement material properties as the key attributes in LCA enables a pavement focused assessment of environmental impacts associated with different design options and, LCA can help in decision support by evaluating environmental impacts of different design alternatives in a project planning/design stage.

  • 4.
    Cantero, Daniel
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. Roughan & O’Donovan Innovative Solutions, Dublin, Ireland.
    Arvidsson, Therese
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    O'Brien, Eugene
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Train–track–bridge modelling and review of parameters2016In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 12, no 9, p. 1051-1064Article in journal (Refereed)
    Abstract [en]

    This study gathers all necessary information to construct a model to calculate the coupled dynamic response of train–track–bridge systems. Each component of the model is presented in detail together with a review of possible sources for the parameter values, including a collection of vehicle models, a variety of track configurations and general railway bridge properties. Descriptions of the most important track irregularity representations are also included. The presented model is implemented in MATLAB and validated against a commercially available finite element package for a range of speeds, paying particular attention to a resonant speed. Finally, the potential of the described model is illustrated with two numerical studies that address interesting aspects of train and bridge dynamic responses. In particular, the effect of the presence of a vehicle on the bridge’s fundamental frequency is studied, as well as the influence of the wavelength of the rail irregularities on the dynamic effects of the bridge and the vehicle.

  • 5.
    Du, Guangli
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges (name changed 20110630).
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges (name changed 20110630).
    LCA of Railway Bridge: a comparison between two superstructure designs2013In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 9, no 11, p. 1149-1160Article in journal (Refereed)
    Abstract [en]

    Railway bridges currently encounter the challenges of increasing the load capacity while the environmental sustainability should be achieved. However, it has been realised that the environmental assessment of railway bridges has not been integrated into the decision-making process, the standard guideline and criterion is still missing in this field. Therefore, the implementation of life cycle assessment (LCA) method is introduced into railway bridges. This article provides a systematic bridge LCA model as a guideline to quantify the environmental burdens for the railway bridge structures. A comparison case study between two alternative designs of Banafjäl Bridge is further carried out through the whole life cycle, with the consideration of several key maintenance and end-of-life scenarios. Six impact categories are investigated by using the LCA CML 2001 method and the known life cycle inventory database. Results show that the fixed-slab bridge option has a better environmental performance than the ballasted design due to the ease of maintenances. The initial material manufacture stage is responsible for the largest environmental burden, while the impacts from the construction machinery and material transportations are ignorable. Sensitivity analysis illustrates the maintenance scenario planning and steel recycling have the significant influence on the final results other than the traffic disturbances.

  • 6.
    Du, Guangli
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Life cycle assessment framework for railway bridges: literature survey and critical issues2014In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 10, no 3, p. 277-294Article in journal (Refereed)
    Abstract [en]

    Currently, the whole world is confronted with great challenges related to environmental issues. As a fundamental infrastructure in transport networks, railway bridges are responsible for numerous material and energy consumption through their life cycle, which in turn leads to significant environmental burdens. However, present management of railway bridge infrastructures is mainly focused on the technical and financial aspects, whereas the environmental assessment is rarely integrated. Life cycle assessment (LCA) is deemed as a systematic method for also assessing the environmental impact of products and systems, but its application in railway bridge infrastructures is rare. Very limited literature and research studies are available in this area. In order to incorporate the implementation of LCA into railway bridges and set new design criteria, this article performs an elaborate literature survey and presents current developments regarding the LCA implementation for railway bridges. Several critical issues are discussed and highlighted in detail. The discussion is focused on the methodology, practical operational issues and data collections. Finally, a systematic LCA framework for quantifying environmental impacts for railway bridges is introduced and interpreted as a potential guideline.

  • 7.
    Hallberg, Daniel
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Stojanovic, Bojan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Akander, Jan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Status, needs and possibilities for servicelife prediction and estimation of district heating distribution networks2012In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 8, no 1, p. 41-54Article in journal (Refereed)
    Abstract [en]

    An optimised and proactive maintenance strategy aims to maximise the economical profit, minimise environmental impacts and keep the risk of failure to a low level. Implementation of such a strategy in the context of district heating requires efforts and abilities for predicting future performances and estimating service life of district heating components. A literature review on failures (damages and performance reductions) occurring on district heating pipes, reveals that failures in district heating pipes are mainly leaks due to corrosion or mechanical impacts and reduced thermal insulation performance: leaks being the more serious damage type. A feasible service life estimation method for this type of damage is the Factor Method. Since the application of this method within the context of DH pipes has not been found in other publications, this paper focuses on describing the method and discusses the possibilities on how to apply it in two specific cases with respect to leakage: service life estimation of repaired district heating pipe sections (i.e. maintenance of district heating network) and of district heating pipes in new or extended district heating networks. Particular attention is paid to which modifying factors should be considered and how to quantify them.

  • 8.
    Liljencrantz, Axel
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Twim, A MATLAB toolbox for real-time evaluation and monitoring of traffic loads on railway bridges2009In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 5, no 5, p. 407-417Article in journal (Refereed)
    Abstract [en]

    This paper describes Twim, a toolbox written in the MATLAB computer language. Twim is designed for monitoring bridge behaviour during train passages as well as for performing Bridge Weigh-In-Motion of railway traffic, both in real-time and offline. The algorithms calculate the static bogie loads and bogie distances, as well as the speed and acceleration of the train. Twim also includes visualization functions, automatic identification of known locomotives and an auto-calibration that uses locomotives with known bogie loads. The algorithms used place specific requirements on both the bridge type and the instrumentation of the bridge. These requirements are explained in the paper. The instrumentation of several bridges is described, and some of the interesting results gained through this instrumentation are presented.

  • 9.
    Mirzadeh, Iman
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Butt, Ali Azhar
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Toller, Susanna
    Swedish Transport Administration, Sweden.
    Birgisson, Björn
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Life cycle cost analysis based on the fundamental cost contributors for asphalt pavements2014In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 10, no 12, p. 1638-1647Article in journal (Refereed)
    Abstract [en]

    A life cycle costing system should include the key variables that drive future costs in order to provide a framework for reducing the risk of under- or overestimating the future costs for maintenance and rehabilitation activities. In Sweden, price of oil products is mostly affected by the global economy rather than by the national economy. Whereas the price index of oil products has had a high fluctuation in different time periods, the cost fluctuation related to labour and equipment has been steady and followed the consumer price index (CPI). Contribution of the oil products was shown to be more than 50% of the total costs regarding construction and rehabilitation of asphalt pavements in Sweden. Consequently, it was observed that neither Swedish road construction price index (Vagindex) nor CPI has properly reflected the price trend regarding the asphalt pavement construction at the project level. Therefore, in this study, a framework is suggested in which energy- and time-related costs are treated with different inflation indices in order to perform a better financial risk assessment regarding future costs.

  • 10.
    Peñaloza, Diego
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. RISE - Research Institutes of Sweden.
    Erlandsson, Martin
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Pousette, Anna
    Climate impacts from road bridges: effects of introducing concrete carbonation and biogenic carbon storage in wood2018In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 14, no 1, p. 56-67Article in journal (Refereed)
    Abstract [en]

    The construction sector faces the challenge of mitigating climate change with urgency. Life cycle assessment(LCA), a widely used tool to assess the climate impacts of buildings, is seldom used for bridges. Materialspecificphenomena such as concrete carbonation and biogenic carbon storage are usually unaccountedfor when assessing the climate impacts from infrastructure. The purpose of this article is to explore theeffects these phenomena could have on climate impact assessment of road bridges and comparisonsbetween bridge designs. For this, a case study is used of two functionally equivalent design alternativesfor a small road bridge in Sweden. Dynamic LCA is used to calculate the effects of biogenic carbon storage,while the Lagerblad method and literature values are used to estimate concrete carbonation. The resultsshow that the climate impact of the bridge is influenced by both phenomena, and that the gap betweenthe impacts from both designs increases if the phenomena are accounted for. The outcome is influencedby the time occurrence assumed for the forest carbon uptake and the end-of-life scenario for the concrete.An equilibrium or 50/50 approach for accounting for the forest carbon uptake is proposed as a middlevalue compromise to handle this issue.

  • 11.
    Safi, Mohammed
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Sundquist, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Racutanu, George
    The Swedish Transport Administration, Trafikverket, Eskilstuna, Sweden.
    Development of the Swedish Bridge Management System by Upgrading and Expanding the Use of LCC2013In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 9, no 12, p. 1240-1250Article in journal (Refereed)
    Abstract [en]

    Although many bridge management systems (BMSs) contain some forms of life-cycle costing (LCC), the use of LCC in bridge engineering is scarce. LCC in many BMSs has mainly been applied within the bridge operation phase to support decisions related to existing bridges. LCC has several useful applications within the bridge entire life, from cradle to grave. This paper introduces the Swedish Bridge and Tunnel Management System (BaTMan). A comprehensive integrated LCC implementation schema will be illustrated, taking into account the bridge investment and management process in Sweden. The basic economic analytical tools as well as other helpful LCC techniques are addressed. A real case study is presented to demonstrate the recent improvement of BaTMan practically in the function of whether to repair or to replace a bridge.  Cost records for 2,508 bridges are used as input data in the presented case study. Considering the same records, the average real and anticipated initial costs of different bridge types in Sweden will be schematically presented.

  • 12.
    Veganzones Muñoz, José Javier
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Pettersson, Lars
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges. Skanska Sweden.
    Sundqvist, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Life-cycle cost analysis as a tool in the developing process for new bridge edge beam solutions2016In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 12, no 9, p. 1185-1201Article in journal (Refereed)
    Abstract [en]

    Currently in Sweden, the life-cycle measures applied on bridge edge beams may take up to 60% of the total costs incurred along the road bridges’ life span. Moreover, significant disturbances for the road users are caused. Therefore, the Swedish Transport Administration has started a project to develop alternative edge beam design solutions that are better for society in terms of cost. The purpose of this article is to investigate whether these proposals can qualify for more detailed studies through an evaluation and comparison based on a comprehensive life-cycle cost analysis. The alternatives including the standard design are applied to typical Swedish bridges. The impact of the values of the parameters with the largest influence is investigated by sensitivity analyses. Results with different life-cycle strategies are shown. The positive influences in the total life-cycle cost of a stainless steel reinforced solution and of the enhanced construction technique are estimated. The concrete edge beam integrated with the deck seems to be favourable, which is in line with international experience observed. Different designs may be appropriate depending on the bridge case and the life-cycle strategy. The Swedish Transport Administration will carry out a demonstration project in a bridge with one of the proposals.

  • 13.
    Wennström, Jonas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Sundquist, Håkan
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karlsson, Robert
    Life cycle cost considerations in project appraisals of collision-free roads2016In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 12, no 2, p. 275-287Article in journal (Refereed)
    Abstract [en]

    In the last decade, many single carriageway roads in Sweden have been converted to collision-free roads as a cost-effective alternative to conventional motorways. Investigations have concluded that the road type has been successful in reducing the number of fatal accidents, despite increased operation and maintenance costs. In recent years, the focus has shifted to converting narrower roads which are anticipated to further increase operation and maintenance cost but also complicate traffic management during road works. There are concerns that when life cycle cost is considered in the investment assessment the socioeconomic profitability could be reduced. This article examines this issue by first assessing changes in costs for operation and maintenance using a life cycle cost analysis approach applied on a case study. The results from the analysis were thereafter integrated into a cost-benefit analysis to assess changes in costs in relation to benefits in improved traffic safety and travel time. The analysis indicated profitability even with substantial increase in operation, maintenance and road user work zone costs. Results are discussed from project implementation and road management perspectives.

  • 14.
    Wiberg, Johan
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Design and Bridges.
    Monitoring dynamic behaviour of a long-span railway bridge2009In: Structure and Infrastructure Engineering, ISSN 1573-2479, E-ISSN 1744-8980, Vol. 5, no 5, p. 419-433Article in journal (Refereed)
    Abstract [en]

    A new long-span prestressed railway bridge was instrumented to better understand and monitor its dynamic behaviour. The bridge is a unique and geometrically complex concrete structure with a very slender box girder section and a slab track system. This paper briefly describes the instrumentation used for monitoring the structural behaviour and focuses on investigating the dynamic characteristics of the bridge. The bridge’s dynamic properties were estimated using the output only stochastic subspace identification technique – for which the theory and analysis technique are briefly described – together with more traditional peak picking methods. Natural frequencies of the bridge were identified and verified from a previous study. The obtained frequencies and damping ratios are to be used in updating the developed finite element model. In addition, extreme bridge acceleration values from different train passages were collected and compared with the recommended limit value in bridge design codes.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf