Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Afshari, Davood
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    Sedighi, Mohammd
    Iran Univ Sci & Technol, Tehran, Iran.
    Karimi, M. R.
    Barsoum, Zuhier
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Lightweight Structures.
    On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis2013In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 22, no 12, 3612-3619 p.Article in journal (Refereed)
    Abstract [en]

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  • 2.
    Andersson, Daniel C.
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
    Lindskog, Per
    Staf, Hjalmar
    Larsson, Per-Lennart
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
    A Numerical Study of Material Parameter Sensitivity in the Production of Hard Metal Components Using Powder Compaction2014In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 23, no 6, 2199-2208 p.Article in journal (Refereed)
    Abstract [en]

    Modeling of hard metal powder inserts is analyzed based on a continuum mechanics approach. In particular, one commonly used cutting insert geometry is studied. For a given advanced constitutive description of the powder material, the material parameter space required to accurately model the mechanical behavior is determined. These findings are then compared with the corresponding parameter space that can possibly be determined from a combined numerical/experimental analysis of uniaxial die powder compaction utilizing inverse modeling. The analysis is pertinent to a particular WC/Co powder and the finite element method is used in the numerical investigations of the mechanical behavior of the cutting insert.

  • 3.
    Fu, Qilin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.
    Lundin, Daniel
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Nicolescu, Cornel Mihai
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Machine and Process Technology.
    Anti-vibration Engineering in Internal Turning Using a Carbon Nanocomposite Damping Coating Produced by PECVD Process2014In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 23, no 2, 506-517 p.Article in journal (Refereed)
    Abstract [en]

    Machining dynamic stability has been enhanced through a damping coating based on a novel carbon-based nanocomposite material. The coating was synthesized using a plasma enhanced chemical vapor deposition method, and deposited on to the round-shank boring bar used for internal turning and tested during machining. Comparisons between an uncoated and a coated boring bar were carried out at 0.25 mm and 0.5 mm depth of cut using a five times length to diameter ratio overhang, which are typical conditions known to generate detrimental mechanical vibrations. From sound pressure measurement it was found that the measured absolute sound level during process could be reduced by about 90% when using the tool coated with damping layer. Surface roughness measurements of the processed workpiece showed decreased Ra values from approximately 3-6 mu m to less than 2 mu m (and in 50% of the cases < 1 mu m) when comparing an uncoated standard tool with its coated counterpart. Moreover, it was found that the addition of an anti-vibration coating did not adversely affect other tool properties, such as rigidity and modularity.

  • 4.
    He, Junjing
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Technology.
    Sandström, Rolf
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Technology. KTH, School of Industrial Engineering and Management (ITM), Centres, Brinell Centre - Inorganic Interfacial Engineering, BRIIE.
    Notargiacomo, Sandro
    Low-Cycle Fatigue Properties of a Nickel-Based Superalloy Haynes 282 for Heavy Components2017In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 26, no 5, 2257-2263 p.Article in journal (Refereed)
    Abstract [en]

    Low-cycle fatigue (LCF) tests of the nickel-based superalloy Haynes 282 from a large forged ingot were conducted at 25 and 750 degrees C with total strain ranges from 0.7 to 1.7%. Compared with other tests on this alloy, it was found that the LCF properties showed similar results at room temperature, but improved number of cycles to failure at high temperatures. The number of cycles at a given total strain range showed no large differences between the core and rim positions. By comparing with two other types of low gamma' volume fraction nickel-based superalloys, Haynes 282 gave the best LCF properties at high temperatures. The reason may be due to the dominating transgranular fracture in the current work. A mixture of intergranular and transgranular fractures had been observed in the other alloys. The results demonstrate that heavy components of Haynes 282 can be produced with good LCF properties.

  • 5.
    Larsson, Per-Lennart
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    On the Influence of Elastic Deformation for Residual Stress Determination by Sharp Indentation Testing2017In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 26, no 8, 3854-3860 p.Article in journal (Refereed)
    Abstract [en]

    The determination of residual stresses in engineering materials using sharp indentation testing is studied analytically and numerically. The numerical part of the investigation is based on the finite element method. In particular, the effect from elastic deformations on global indentation properties is discussed in detail. This effect is essential when residual stresses are to be determined based on the change of the contact area due to such stresses. However, standard relations for this purpose are founded on the fact that the material hardness is invariant as regards residual (applied) stresses. Presently, this assumption is scrutinized and it is shown that it is only valid at dominating plastic deformation around the contact region. The hardness dependence of residual stresses can, however, be correlated in the same way as in the case of stress-free materials, indicating that the wealth of characterization formulas pertinent to indentation hardness is available also for the purpose of residual field determination. Only cone indentation of elastic-perfectly plastic materials is considered, but the generality of the results is discussed in some detail.

  • 6.
    Olupot, Peter Wilberforce
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Mechanical Metallurgy.
    Jonsson, Stefan
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Mechanical Metallurgy.
    Byaruhanga, Joseph K.
    Study of Glazes and Their Effects on Properties of Triaxial Electrical Porcelains from Ugandan Minerals2010In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 19, no 8, 1133-1142 p.Article in journal (Refereed)
    Abstract [en]

    Kaolin, ball clay, feldspar, and sand were collected from deposits in Uganda, milled and sieved to particle sizes of 45, 45, 53, and 25 μm, respectively. Three porcelain bodies and five glazes were formulated from them. The glazes were applied on porcelain specimens and subsequently evaluated for their effects on properties of porcelain samples. The formulated specimens were investigated using dilatometry, Steger test, FEG-SEM, XRD, 4-point bending, dielectric strength, and fracture toughness tests. A porcelain specimen consisting of 68% SiO2, 19% Al2O3, 4.7% K2O, and a glaze RO:0.57Al2O3:4.86SiO2 exhibited MOR of 105 MPa with Weibull modulus of 5.6 and a dielectric strength of 18 kV/mm upon firing at a heating rate of 6 °C/min to 1250 °C and holding for 2 h. The microstructure of the high-strength specimen exhibited round mullite needles, quartz, and glass. Holding samples for 2 h at peak temperature resulted in a 22% increase in MOR compared to 1 h holding. Glazing further improved strength by 67% for the best sample. Compressive stresses in glaze contributed to the strengthening effect. The dielectric and mechanical strength values obtained qualify the formulated sample for application in electrical insulation.

  • 7.
    Staf, Hjalmar
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). Sandvik Coromant AB, Sweden.
    Lindskog, P.
    Andersson, D. C.
    Larsson, Per-Lennart
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    On the Influence of Material Parameters in a Complex Material Model for Powder Compaction2016In: Journal of materials engineering and performance (Print), ISSN 1059-9495, E-ISSN 1544-1024, Vol. 25, no 10, 4408-4415 p.Article in journal (Refereed)
    Abstract [en]

    Parameters in a complex material model for powder compaction, based on a continuum mechanics approach, are evaluated using real insert geometries. The parameter sensitivity with respect to density and stress after compaction, pertinent to a wide range of geometries, is studied in order to investigate completeness and limitations of the material model. Finite element simulations with varied material parameters are used to build surrogate models for the sensitivity study. The conclusion from this analysis is that a simplification of the material model is relevant, especially for simple insert geometries. Parameters linked to anisotropy and the plastic strain evolution angle have a small impact on the final result.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf