Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Arabasadi, Z.
    et al.
    Khorasani, M.
    Akhlaghi, Shahin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Fazilat, H.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Shiri, M. E.
    Prediction and optimization of fireproofing properties of intumescent flame retardant coatings using artificial intelligence techniques2013In: Fire safety journal, ISSN 0379-7112, E-ISSN 1873-7226, Vol. 61, p. 193-199Article in journal (Refereed)
    Abstract [en]

    A multi-structured architecture of artificial intelligence techniques including artificial neural network (ANN), adaptive neuro-fuzzy-inference-system (ANFIS) and genetic algorithm (GA) were developed to predict and optimize the fireproofing properties of a model intumescent flame retardant coating including ammonium polyphosphate, pentaerythritol, melamine, thermoplastic acrylic resin and liquid hydrocarbon resin. By implementing ANN on heat insulation results of coating samples, prepared based on a L16 orthogonal array, mean fireproofing time (MFPT) values were properly predicted. The predicted data were then proved to be valid through performing closeness examinations on fuzzy inference systems results regarding their experimental counterparts. However, the possible deviations tapped into phenomena like foam detachment and char cracking were alleviated by ANFIS modeling embedded with pertinent fuzzy rules based on the sole and associative practical role of used additives. The contribution of each intumescent coating component on the formulation with optimized fireproofing behavior was then explored using GA modeling. A similar optimization procedure was also conducted using conventional Taguchi experimental design but the GA based optimized intumescent coating was found to exhibit higher MFPT value than that suggested by the Taguchi method.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf