Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Birru, Eyerusalem
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Erlich, Catharina
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Martin, Andrew
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Energy performance comparisons and enhancements in the sugar cane industry2019In: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, Vol. 9, no 2, p. 267-282Article in journal (Refereed)
    Abstract [en]

    In this study, energy-related operational parameters for modern and traditional (conventional) sugar mills are analyzed, with the goals of identifying improvements in energy efficiency and potential for surplus electricity export. Results show that the power- to-heat ratio of modern and traditional mills is clearly distinct, lying in the ranges of 0.3–0.5 and 0.04–0.07, respectively. Modifications under consideration for the traditional mills include the following upgrades: electric drives and higher capacity back-pressure turbine (case 1); high-pressure boiler, condensing extraction steam turbine and electric drives (case 2); and improvements in case 2 plus bagasse drying (case 3). The thermodynamic impact of these modifications shows that more power is generated as the modification becomes more advanced. Case 1 exhibits a modest increase in cogeneration efficiency (4%) as compared to the base case, while the cogeneration efficiency increase is more marked for cases 2 and 3 (21% and 31%, respectively). Surplus power was studied in a regional context, where it was found that the contribution of 19 retrofitted sugar mills in nine Brazilian regions could supply 30% or more power as compared to current installed power capacity. The economic analysis showed that levelized cost of electricity (LCOE) was lowest for case 1 (11 USD/MWh) and highest for cases 2 and 3 (58 USD/kWh).

  • 2.
    Menya, E
    et al.
    Department of Mechanical Engineering, Makerere University, Uganda.
    Olupot, P W
    Department of Mechanical Engineering, Makerere University, Uganda.
    Storz, H
    Thünen Institute of Agricultural Technology, Braunschweig, Germany.
    Lubwama, M
    Department of Mechanical Engineering, Makerere University, Uganda.
    Kiros, Yohannes
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    John, MJ
    P0lymer and Composite Unit, Council for Scientific and Industrial Research, Port Elizabeth, South Africa.
    Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon2019In: Biomass Conversion and Biorefinery, ISSN 2190-6815, E-ISSN 2190-6823, p. 1-16Article in journal (Refereed)
    Abstract [en]

    Response surface methodology was employed to optimize pyrolysis conditions for production of char with maximumyield, fixedcarbon content, and with minimum ash content from Uganda’s New Rice for Africa (NERICA) 1 rice husk variety. The aim wasto obtain rice husk char with more suitable properties as an activated carbon precursor. Mathematical models were developed toexplain the relationships between the experimental responses and the pyrolysis parameters of temperature (400–600 °C), heating rate (10–25 °C min−1), and heating period (60–120 min). The optimized rice husk char was further characterized for elementaland proximate compositions, thermal behavior, specific surface area, as well as surface functional groups. Results from theanalysis of variance (ANOVA) revealed that the quadratic model best fits each of the responses. Pyrolysis temperature had thegreatest influence on each of the responses, followed by heating period, and lastly heating rate. Optimum pyrolysis conditionswere found to be temperature (406 °C), heating rate (10 °C min−1), and heating period (60 min), resulting in char yield, fixedcarbon, and ash contents of 35.26, 55.39, and 35.01% dry basis, respectively. Compared to raw rice husk, the resulting rice huskchar was found more suited as activated carbon precursor, due to its enriched carbon content (60.35%) and specific surface area (123.9 m2 g−1). Thermogravimetric analysis of the rice husk char revealed that thermal activation temperatures higher than 400 °C may be required to considerably devolatilize the char, forming a more porous activated carbon.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf