kth.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Tianyang
    et al.
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Banda, Harish
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Yang, Luming
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    Li, Jian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. Berzelii Center EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden.
    Zhang, Yugang
    Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
    Parenti, Riccardo
    Automobili Lamborghini S.p.A., 40019 Sant'Agata Bolognese, Italy.
    Dincă, Mircea
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
    High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics2023In: Joule, E-ISSN 2542-4351, Vol. 7, no 5, p. 986-1002Article in journal (Refereed)
    Abstract [en]

    Designing materials for electrochemical energy storage with short charging times and high charge capacities is a longstanding challenge. The fundamental difficulty lies in incorporating a high density of redox couples into a stable material that can efficiently conduct both ions and electrons. We report all-organic, fused aromatic materials that store up to 310 mAh g−1 and charge in as little as 33 s. This performance stems from abundant quinone/imine functionalities that decorate an extended aromatic backbone, act as redox-active sites, engage in hydrogen bonding, and enable a delocalized high-rate energy storage with stability upon cycling. The extended conjugation and hydrogen-bonding-assisted bulk charge storage contrast with the surface-confined or hydration-dependent behavior of traditional inorganic electrodes.

  • 2. Li, Fusheng
    et al.
    Yang, Hao
    Li, Wenlong
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Device Fabrication for Water Oxidation, Hydrogen Generation, and CO2 Reduction via Molecular Engineering2018In: Joule, E-ISSN 2542-4351, Vol. 2, no 1, p. 36-60Article in journal (Refereed)
    Abstract [en]

    Research on the storage of solar energy in terms of hydrogen or carbon-based fuels by using sunlight to split water or to reduce CO2, respectively, has gained significant attention in recent years. Among reported water-splitting systems, one approach has focused on hybrid systems with molecular catalysts or molecular light-harvesting systems that are combined with nanostructured materials. In this perspective we summarize recent developments in operation and fabrication strategies for various water-splitting devices constructed from electrodes (electrochemical cells) or photoelectrodes (photoelectrochemical cells) using molecular engineering. We also provide insights into the factors that influence device efficiency and stability, and provide guidelines for future fabrication strategies for more advanced devices.

  • 3.
    Zhang, Biaobiao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Ambre, Ram B.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Liu, Tianqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Meng, Qijun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Timmer, Brian J. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Advancing Proton Exchange Membrane Electrolyzers with Molecular Catalysts2020In: Joule, E-ISSN 2542-4351, Vol. 4, no 7, p. 1408-1444Article, review/survey (Refereed)
    Abstract [en]

    Molecular catalysts possess numerous advantages over conventional heterogeneous catalysts in precise structure regulation, in-depth mechanism understanding, and efficient metal utilization. Various molecular catalysts have been reported that efficiently catalyze reactions involved in artificial photosynthesis, however, these catalysts have been rarely considered in view of practical applications. With this review, firstly we demonstrate in the introduction that molecular catalysts can bring new opportunities to proton exchange membrane (PEM) electrolyzers. In the following parts, we provide an overview of molecular catalyst modified carbon materials developed for electrochemical water oxidation, proton reduction, and CO2 reduction reactions. These materials and the involved immobilization strategies as well as characterization techniques may be directly employed in the investigations of application of molecular catalysts in PEM electrolyzers. The future scientific perspectives and challenges to advance this promising, yet underdeveloped technology for solar fuel production, integrating PEM electrolyzer with molecular-level catalysis, are discussed in the conclusions.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf