Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Briggner, Lars-Erik
    et al.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Rosdahl, Jan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Svensson, Per H.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    In Silico Solid State Perturbation for Solubility Improvement2014In: ChemMedChem, ISSN 1860-7179, E-ISSN 1860-7187, Vol. 9, no 4, p. 724-726Article in journal (Refereed)
    Abstract [en]

    Solubility is a frequently recurring issue within pharmaceutical industry, and new methods to proactively resolve this are of fundamental importance. Here, a novel methodology is reported for intrinsic solubility improvement, using insilico prediction of crystal structures, by perturbing key interactions in the crystalline solid state. The methodology was evaluated with a set of benzodiazepine molecules, using the two-dimensional molecular structure as the only a priori input. The overall trend in intrinsic solubility was correctly predicted for the entire set of benzodiazepines molecules. The results also indicate that, in drug compound series where the melting point is relatively high (i.e., brick dust compounds), the reported methodology should be very suitable for identifying strategically important molecular substitutions to improve solubility. As such, this approach could be a useful predictive tool for rational compound design in the early stages of drug development.

  • 2. Wacker, Soeren J.
    et al.
    Jurkowski, Wiktor
    Simmons, Katie J.
    Fishwick, Colin W. G.
    Johnson, A. Peter
    Madge, David
    Lindahl, Erik
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics.
    Rolland, Jean-Francois
    de Groot, Bert L.
    Identification of Selective Inhibitors of the Potassium Channel Kv1.1-1.2(3) by High-Throughput Virtual Screening and Automated Patch Clamp2012In: ChemMedChem, ISSN 1860-7179, E-ISSN 1860-7187, Vol. 7, no 10, p. 1775-1783Article in journal (Refereed)
    Abstract [en]

    Two voltage-dependent potassium channels, Kv1.1 (KCNA1) and Kv1.2 (KCNA2), are found to co-localize at the juxtaparanodal region of axons throughout the nervous system and are known to co-assemble in heteromultimeric channels, most likely in the form of the concatemer Kv1.11.2(3). Loss of the myelin sheath, as is observed in multiple sclerosis, uncovers the juxtaparanodal region of nodes of Ranvier in myelinated axons leading to potassium conductance, resulting in loss of nerve conduction. The selective blocking of these Kv channels is therefore a promising approach to restore nerve conduction and function. In the present study, we searched for novel inhibitors of Kv1.11.2(3) by combining a virtual screening protocol and electrophysiological measurements on a concatemer Kv1.11.2(3) stably expressed in Chinese hamster ovary K1 (CHO-K1) cells. The combined use of four popular virtual screening approaches (eHiTS, FlexX, Glide, and Autodock-Vina) led to the identification of several compounds as potential inhibitors of the Kv1.11.2(3) channel. From 89 electrophysiologically evaluated compounds, 14 novel compounds were found to inhibit the current carried by Kv1.11.2(3) channels by more than 80?% at 10 mu M. Accordingly, the IC50 values calculated from concentrationresponse curve titrations ranged from 0.6 to 6 mu M. Two of these compounds exhibited at least 30-fold higher potency in inhibition of Kv1.11.2(3) than they showed in inhibition of a set of cardiac ion channels (hERG, Nav1.5, and Cav1.2), resulting in a profile of selectivity and cardiac safety. The results presented herein provide a promising basis for the development of novel selective ion channel inhibitors, with a dramatically lower demand in terms of experimental time, effort, and cost than a sole high-throughput screening approach of large compound libraries.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf