Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tribukait, Arne
    et al.
    KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology. KTH, School of Technology and Health (STH), Centres, Swedish Aerospace Physiology Centre, SAPC.
    Eiken, Ola
    KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology. KTH, School of Technology and Health (STH), Centres, Swedish Aerospace Physiology Centre, SAPC.
    On the time course of short-term forgetting: A human experimental model for the sense of balance2016In: Cognitive Neurodynamics, ISSN 1871-4080, E-ISSN 1871-4099, Vol. 10, no 1, p. 7-22Article in journal (Refereed)
    Abstract [en]

    The primary aim of this study was to establish whether the decline of the memory of an angular displacement, detected by the semicircular canals, is best characterized by an exponential function or by a power function. In 27 subjects a conflict was created between the semicircular canals and the graviceptive systems. Subjects were seated, facing forwards, in the gondola of a large centrifuge. The centrifuge was accelerated from stationary to 2.5Gz. While the swing out of the gondola (66°) during acceleration constitutes a frontal plane angular-displacement stimulus to the semicircular canals, the graviceptive systems persistently signal that the subject is upright. During 6 min at 2.5Gz the perceived head and body position was recorded; in darkness the subject repeatedly adjusted the orientation of a luminous line so that it appeared to be horizontal. Acceleration of the centrifuge induced a sensation of tilt which declined with time in a characteristic way. A three-parameter exponential function (Y = Ae−bt + C) and a power function (Y = At−b + C) were fitted to the data points. The inter-individual variability was considerable. In the vast majority of cases, however, the exponential function provided a better fit (in terms of RMS error) than the power function. The mean exponential function was: y = 27.8e−0.018t + 0.5°, where t is time in seconds. Findings are discussed with connection to possible underlying neural mechanisms; in particular, the head-direction system and short-term potentiation and persistent action potential firing in the hippocampus are considered.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf