Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Asim, Muhammad
    et al.
    Imran, Muhammad
    Leung, Michael K. H.
    Kumar, N. T. Uday
    Martin, Andrew R.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Kashif, Faiza
    Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in Dubai using flat plate and evacuated tube solar collectors2017In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 92, p. 46-59Article in journal (Refereed)
    Abstract [en]

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four to five members. Experiments have been performed in Ras Al Khaimah Research and Innovation Centre (RAKRIC) facility. The experimental setup has been installed to achieve the required production of 15-25 L/d of drinking water and 250 L/d of hot water for domestic purposes. Experiments have been performed on MD setup at optimized flow rates of 6 L/min on hot side and 3 L/min on cold side for producing the desired distillate. The hot side and cold side MD temperature has been maintained between 60 degrees C and 70 degrees C, and 20 degrees C and 30 degrees C. The total annual energy demand comes out to be 8,223 kWh (6,000 kWh is for pure water and 2,223 kWh for hot water). The optimum aperture areas for flat plate and evacuated tube collector field have been identified as 8.5 and 7.5 m(2), respectively. Annual energy consumption per liter for pure water production is 1, 0.85 and 0.7 kWh/L for different MD hot and cold inlet temperatures.

  • 2. Asim, Muhammad
    et al.
    Kumar, N. T. Uday
    Martin, Andrew R.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Feasibility analysis of solar combi-system for simultaneous production of pure drinking water via membrane distillation and domestic hot water for single-family villa: pilot plant setup in Dubai2016In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 57, no 46, p. 21674-21684Article in journal (Refereed)
    Abstract [en]

    This paper presents the feasibility study of installation of a solar-driven integrated MD desalination system for simultaneous production of pure drinking water and solar domestic hot water in United Arab Emirates (UAE) for a single-family villa comprising of 4-5 persons. In order to satisfy the current and future demand of water for domestic purposes, the desalination of seawater is considered to be one of the most effective and strategic technique in UAE. The stress on the underground water aquifers, rapid industrial growth, and increase in urban population in UAE results in the tremendous increase in fresh water demand during the past few decades. Since the local municipalities also provide the desalinated fresh water to the people but they mostly rely on bottled water for drinking purpose. In this paper, the pilot setup plant is designed, commissioned, and installed on site in UAE using air gap membrane distillation desalination process to fulfill the demand of 15-25 L/d of pure drinking water and 250 L/d of domestic hot water for a single-family villa. Experimental analyses have been performed on this setup during summer on flat plate solar collectors having different aperture areas (Experiments have been performed for aperture area of 11.9 m(2) in this research study for feasibility purpose). The average hot-side temperature ranges from 50 to 70 degrees C and average cold-side temperature of 35 degrees C.

  • 3.
    Kullab, Alaa
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Fakhrai, Reza
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Martin, andrew
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Experimental evaluation of a modified air-gap membrane distillation prototype2013In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 51, no 25-27, p. 4998-5004Article in journal (Refereed)
    Abstract [en]

    Modifications were implemented on a semi-commercial air-gap membrane distillation prototype to assess experimentally any improvement in its performance. The main changes were in the air-gap domain with focus on reducing the conductive heat transfer losses by reducing the physical support that separates the membrane from the condensation surface. Moreover, several feed channel spacers were tested as well and assessed based on their effect in increasing the mass transfer and imposed pressure drop. Results show that the modifications increased slightly the distillate mass flow rate by 9-11% and reduced the conductive heat losses by 20-24%. Spacer effect was found to be mainly in imposed pressure drop within the tested types.

  • 4.
    Kumar, Nutakki Tirumala Uday
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Martin, Andrew R.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Experimental modeling of an air-gap membrane distillation module and simulation of a solar thermal integrated system for water purification2017In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 84, p. 123-134Article in journal (Refereed)
    Abstract [en]

    Membrane distillation is a novel process that could be adapted effectively for many water purification applications. In recent years, several bench, pilot and commercial scale membrane distillation systems with production capacities ranging from 20 L/d to 50 m(3)/d were developed and tested. In this work, a single cassette air-gap membrane distillation (AGMD) module was characterized to identify the effect of process parameters on distillate flux and thermal efficiency. Favorable conditions to obtain distillate flow rate of 1.5-3 kg/h were determined on a bench scale experimental setup. Factorial design of experiments was conducted and response surface methodology (RSM) was applied to develop an empirical regression model relating operating parameters with AGMD system performance indicators. Operating parameters including hot feed inlet temperature (T-Hin), cold feed inlet temperature (T-Cin), feed flow rate (V-f) and feed conductivity (C-f) were considered. Distillate flux (J(d)) and specific performance ratio (SPR) were selected as the performance indicators for the modeling. The developed regression model using RSM was tested by analysis of variance. Regression analysis showed agreement with the experimental data fitted with second-order polynomial model having determination coefficient (R-2) values of 0.996 and 0.941 for J(d) and SPR, respectively. Numerical optimization has been carried out to identify optimal set of operating conditions for achieving desired operation. Also, dynamic simulation of the membrane distillation module integrated solar thermal system has been reported along with validation of the system model by comparing with the experimental data obtained from a pilot scale setup located in UAE.

  • 5.
    Malmsten, Madelene
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Lekkas, Demetris F.
    Univ Aegean, Samos Greece.
    Cost analysis of urban water supply and waste water treatment processes to support decisions and policy making: application to a number of Swedish communities2010In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 18, no 1-3, p. 327-340Article in journal (Refereed)
    Abstract [en]

    An econometric model has been developed that represents the cost structure of water supply and waste water treatment in an urban area. This paper proposes a method to capture the financial characteristics of the underlying organisation and addresses the steps and the conceptualisation in order to create a cost structure for municipal water utilities. The estimation procedure is based on a multivariate regression approach and the cost structure is represented by a parametrical expression (cost function). This function has been used for the purpose of analysing the observed system in terms of efficiency, technology, capacity, financial state etc. In the mathematical formula the estimated parameters relate certain system input components to costs, which are important in order to understand the key drivers. An empirical analysis is undertaken for a number of utilities in Sweden.

  • 6.
    Nutakki, Tirumala Uday Kumar
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology. American University of Ras Al Khaimah (AURAK), United Arab Emirates.
    Martin, Andrew R.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Techno-economic optimization of solar thermal integrated membrane distillation for cogeneration of heat and pure water2017In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 98, p. 16-30Article in journal (Refereed)
    Abstract [en]

    The aim of this paper is to evaluate optimum design criteria for developing solar thermal integrated membrane distillation system for cogeneration of pure water and heat. The temporal and seasonal variability of the driving variables, such as ambient temperature and solar irradiance requires dynamic simulation of combined system using tools such as TRNSYS. Dynamic simulation and parametric analysis enables to design a functional system and then optimizes the design. In this study, the application of cogeneration system for residential households in United Arab Emirates is considered for per capita production of 4l/day of pure water and 50l/day of domestic hot water. The performance of cogeneration is optimized by varying various design parameters such as collector tilt angle, thermal storage volume and area of the solar collector field. Cogeneration solar fraction and payback period are considered as performance indicators for energetic and economic optimization. Further simulations are extended from small to large family application and for utilizing either flat plate (FPC) or evacuated tubular collector (ETC) systems. Optimized cogeneration system utilizes more than 80% of the available solar energy gain and operates at 45% and 60% collector efficiencies for FPC and ETC systems respectively Also, combined and system efficiencies of the cogeneration system are compared with standalone operational efficiencies for solar heaters and solar membrane distillation systems. Results show that, cogeneration operation reduces 6–16% of thermal energy demand and also enables 25% savings in electrical energy demand. Payback period could be reduced by 2.5–3 years by switching from regular solar water heating to cogeneration systems along with 4-fold increase in net cumulative savings.

  • 7.
    Shafiq, Muhammad
    et al.
    Sultan Qaboos Univ, Dept Elect & Comp Engn, Coll Engn, POB 33, Muscat 123, Oman..
    Laxman, Karthik
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Estimation of ion adsorption using iterative analytical model in capacitive deionization process2018In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 116, p. 75-82Article in journal (Refereed)
    Abstract [en]

    Capacitive deionization (CDI) is an upcoming technique that can replace existing processes for removing and recuperating metal ions from dilute industrial waste waters. CDI removes ions via electrosorption on to its electrode surfaces, the efficiency of which is a function of CDI electrode properties that progressively change during continued operation. As such a need exists to develop a model to predict CDI performance over elongated periods which is independent of electrode properties and has negligible error values. By applying a first order non-linear dynamic model (FONDM) with inputs independent of the electrode characteristics, we propose a universal model that can predict CDI ion adsorption capacity with changes in applied potential, flow rate and electrolyte temperature to within 5% of the experimentally obtained results. The model was verified using activated carbon cloth (ACC) as a test electrode and aqueous sodium chloride solution as electrolyte, with a good prediction for ion electrosorption efficiency and time dependent electrosorption dynamics. The simplicity of the model makes it easy to adapt for various applications and in the development of intelligent control systems for CDI units in practical settings.

  • 8.
    Zhang, Wen
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Removal of micropollutants and nutrients in household wastewater using organic and inorganic sorbentsIn: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986Article in journal (Refereed)
    Abstract [en]

    The efficiency of five organic and five inorganic sorbents in removing 19 organic micropollutants (MPs), phosphorus, nitrogen, and dissolved organic carbon (DOC) was tested in a two-week column experiment using household wastewater spiked with pharmaceuticals (n = 6), biocides/pesticides (n = 4), organophosphates (n = 3), a fragrance, a UV-stablizer, a food additive,a rubber additive, a plasticizer and a surfactant. Two types of granular activated carbon (GAC), two types of lignite, a pine bark product, and five mineral-based sorbents were tested. All the organic sorbents except pine bark achieved better removal efficiencies of DOC (on average, 70 ± 27%) and MPs (93 ± 11%) than the inorganic materials (DOC: 44 ± 7% and MPs: 66 ± 38%). However, the organic sorbents (i.e. GAC and xyloid lignite) removed less phosphorus (46 ± 18%), while sorbents with a high calcium or iron content (i.e. Polonite® and lignite) generally removed phosphorus more efficiently (93 ± 3%). Ammonium-nitrogen was well removed by sorbents with a pH between 7 and 9, with an average removal of 87%, whereas lignite (pH 4) showed the lowest removal efficiency (50%). Some MPs were well removed by all sorbents (≥97%) including biocides (hexachlorobenzene, triclosan and terbutryn), organophosphates (tributylphosphate, tris-(1,3-dichloro-2-propyl)phosphate and triphenylphosphate) and one fragrance (galaxolide). The pesticide 2,6-dichlorobenzamide and the pharmaceutical diclofenac were poorly removed by the pine bark and inorganic sorbents (on average, 4%), while organic sorbents achieved high removal of these chemicals (87%).

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf