Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Butt, Ali Azhar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Birgisson, Björn
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Considering the benefits of asphalt modification using a new technical LCA framework2016In: Journal of Civil Engineering and Management, ISSN 1392-3730, E-ISSN 1822-3605, Vol. 22, no 5, p. 597-607Article in journal (Refereed)
    Abstract [en]

    Asphalt mixtures properties can be enhanced by modifying it with additives. Even though the immediatebenefits of using polymers and waxes to modify the binder properties are rather well documented, the effects of suchmodification over the lifetime of a road are seldom considered. To investigate this, a newly developed open technical lifecycle assessment (LCA) framework was used to determine production energy and emission limits for the asphaltadditives. The LCA framework is coupled to a calibrated mechanics based computational framework that predicts the intimepavement performance. Limits for production energy of wax and polymers were determined for the hypotheticalcase studies to show how LCA tools can assist the additives manufacturers to modify their production procedures andhelp road authorities in setting ‘green’ limits to get a real benefit from the additives over the lifetime of a road. From thedetailed case-studies, it was concluded that better understanding of materials will lead to enhanced pavement design andcould help in the overall reduction of energy usage and emissions.

  • 2.
    Mirzadeh, Iman
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Birgisson, Björn
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    Accommodating Energy Price Volatility in Life Cycle Cost Analysis of Asphalt PavementsIn: Journal of Civil Engineering and Management, ISSN 1392-3730, E-ISSN 1822-3605Article in journal (Refereed)
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf