Ändra sökning
Avgränsa sökresultatet
1 - 36 av 36
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ohm, Christian
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ripellino, Giulia
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Modelling radiation damage to pixel sensors in the ATLAS detector2019Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, artikel-id P06012Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 10(15) 1 MeV n(eq)/cm(2), while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (<= 10(15) 1 MeV n(eq)/cm(2)).

  • 2. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ripellino, Giulia
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Study of the material of the ATLAS inner detector for Run 2 of the LHC2017Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, artikel-id P12009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.

  • 3. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Performance of the ATLAS Transition Radiation Tracker in Run 1 of the LHC: tracker properties2017Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, nr 5, artikel-id P05002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS inner detector are described in this paper for different data-taking conditions in proton-proton, proton-lead and lead-lead collisions at the Large Hadron Collider (LHC). The performance is studied using data collected during the first period of LHC operation (Run 1) and is compared with Monte Carlo simulations. The performance of the TRT, operating with two different gas mixtures (xenon-based and argon-based) and its dependence on the TRT occupancy is presented. These studies show that the tracking performance of the TRT is similar for the two gas mixtures and that a significant contribution to the particle momentum resolution is made by the TRT up to high particle densities.

  • 4. Aaboud, M.
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ohm, Christian
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ripellino, Giulia
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data2019Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.

  • 5. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    A measurement of material in the ATLAS tracker using secondary hadronic interactions in 7 TeV p p collisions2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, artikel-id P11020Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Knowledge of the material in the ATLAS inner tracking detector is crucial in under-standing the reconstruction of charged-particle tracks, the performance of algorithms that identify jets containing b-hadrons and is also essential to reduce background in searches for exotic particles that can decay within the inner detector volume. Interactions of primary hadrons produced in pp collisions with the material in the inner detector are used to map the location and amount of this material. The hadronic interactions of primary particles may result in secondary vertices, which in this analysis are reconstructed by an inclusive vertex-finding algorithm. Data were collected using minimum-bias triggers by the ATLAS detector operating at the LHC during 2010 at centre-of-mass energy root s = 7 TeV, and correspond to an integrated luminosity of 19 nb(-1). Kinematic properties of these secondary vertices are used to study the validity of the modelling of hadronic interactions in simulation. Secondary-vertex yields are compared between data and simulation over a volume of about 0.7m(3) around the interaction point, and agreement is found within overall uncertainties.

  • 6. Aaboud, M
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 76, nr 12, artikel-id 666Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb- 1 of pp collision data collected at the LHC at s=7 TeV and 20.3 fb- 1 at s=8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity.

  • 7. Aad, G.
    et al.
    Grahn, Karl-Johan
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    University of Chicago.
    Zychacek, V.
    Lafaye, Remi
    Univ Savoie, LAPP, CNTS IN2P3, Annecy Le Vieux, France.
    et, al
    The ATLAS Experiment at the CERN Large Hadron Collider2008Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 3, s. S08003-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  • 8.
    Aad, G.
    et al.
    Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France..
    Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ohm, Christian
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ripellino, Giulia
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, P. Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 22019Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 14, artikel-id P09011Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 mu m.

  • 9. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Morley, Anthony
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    A neural network clustering algorithm for the ATLAS silicon pixel detector2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, nr 9, s. P09009-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.

  • 10. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Morley, Anthony
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Operation and performance of the ATLAS semiconductor tracker2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, s. UNSP P08009-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74 +/- 0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, delta-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations.

  • 11. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Morley, Anthony
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Standalone vertex finding in the ATLAS muon spectrometer2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, nr 2, s. P02001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to b (b) over bar final states, and pp collision data at root s = 7 TeV collected with the ATLAS detector at the LHC during 2011.

  • 12. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run2013Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, s. P07004-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a summary of beam-induced backgrounds observed in the ATLAS detector and discusses methods to tag and remove background contaminated events in data. Trigger-rate based monitoring of beam-related backgrounds is presented. The correlations of backgrounds with machine conditions, such as residual pressure in the beam-pipe, are discussed. Results from dedicated beam-background simulations are shown, and their qualitative agreement with data is evaluated. Data taken during the passage of unpaired, i.e. non-colliding, proton bunches is used to obtain background-enriched data samples. These are used to identify characteristic features of beam-induced backgrounds, which then are exploited to develop dedicated background tagging tools. These tools, based on observables in the Pixel detector, the muon spectrometer and the calorimeters, are described in detail and their efficiencies are evaluated. Finally an example of an application of these techniques to a monojet analysis is given, which demonstrates the importance of such event cleaning techniques for some new physics searches.

  • 13. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Triggers for displaced decays of long-lived neutral particles in the ATLAS detector2013Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, s. P07015-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A set of three dedicated triggers designed to detect long-lived neutral particles decaying throughout the ATLAS detector to a pair of hadronic jets is described. The efficiencies of the triggers for selecting displaced decays as a function of the decay position are presented for simulated events. The effect of pile-up interactions on the trigger efficiencies and the dependence of the trigger rate on instantaneous luminosity during the 2012 data-taking period at the LHC are discussed.

  • 14. Aad, G.
    et al.
    Jovicevic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Kuwertz, Emma S.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Morley, Anthony K.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Monitoring and data quality assessment of the ATLAS liquid argon calorimeter2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, nr 7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7-8 TeV had calorimeter data quality suitable for physics analysis.

  • 15. Aad, G.
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Morley, Anthony
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Performance of b-jet identification in the ATLAS experiment2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, nr 4, artikel-id P04008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag rate for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.

  • 16. Aad, G.
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, artikel-id P05013Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high beta* are studied.

  • 17. Aad, G
    et al.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sidebo, Edvin
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    Modelling Z -> tau tau processes in ATLAS with tau-embedded Z -> mu mu data2015Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, artikel-id P09018Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z -> tau tau decays. In Z -> mu mu events selected from proton-proton collision data recorded at root s = 8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by tau leptons from simulated Z -> tau tau decays at the level of reconstructed tracks and calorimeter cells. The tau lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and tau leptons as well as the detector response to the tau decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called tau-embedding method is particularly relevant for Higgs boson searches and analyses in tau tau final states, where Z -> tau tau decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H -> tau tau analysis of the full datataset recorded during 2011 and 2012.

  • 18. Aad, Georges
    et al.
    Lafaye, Remi
    Cern.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Strandberg, Jonas
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Zwalinski, L.
    et al.,
    A study of the material in the ATLAS inner detector using secondary hadronic interactions2012Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, s. P01013-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 mu m to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum.

  • 19. Abat, E.
    et al.
    Abdallah, J. M.
    Addy, T. N.
    Adragna, P.
    Aharrouche, M.
    Lafaye, Remi
    Univ Savoie, LAPP, CNTS IN2P3, Annecy Le Vieux, France.
    Lund-Jensen, Bengt
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test2011Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 6, s. 06001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 GeV and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  • 20. Abbott, B
    et al.
    Morley, Anthony
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Zwalinski, L.
    Production and integration of the ATLAS Insertable B-Layer2018Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, nr 5, artikel-id T05008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

  • 21.
    Abdellaoui, G.
    et al.
    Univ Abou Bekr Belkaid Tlemcen, Fac Technol, Telecom Lab, Tilimsen, Algeria..
    Abe, S.
    Nihon Univ Chiyoda, Tokyo, Japan..
    Adams, J. H., Jr.
    Univ Alabama, Huntsville, AL 35899 USA..
    Ahriche, A.
    Univ Jijel, Lab Theoret Phys LPT, Jijel, Algeria..
    Allard, D.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Allen, L.
    Univ Chicago, Chicago, IL 60637 USA..
    Alonso, G.
    UPM, Madrid, Spain..
    Anchordoqui, L.
    CUNY, Lehman Coll, Bronx, NY USA..
    Anzalone, A.
    Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.;INAF Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy..
    Arai, Y.
    High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan..
    Asano, K.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Attallah, R.
    Univ Badji Mokhtar, Fac Sci, Dept Phys, LPR, Annaba, Algeria..
    Attoui, H.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Ave Pernas, M.
    Univ Alcala UAH, Madrid, Spain..
    Bacholle, S.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Bakiri, M.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Baragatti, P.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Barrillon, P.
    Univ Paris 11, CNRS IN2P3, LAL, Orsay, France..
    Bartocci, S.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Bayer, J.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Beldjilali, B.
    Univ Abou Bekr Belkaid Tlemcen, Fac Technol, Telecom Lab, Tilimsen, Algeria..
    Belenguer, T.
    INTA, Madrid, Spain..
    Belkhalfa, N.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Bellotti, R.
    Ist Nazl Fis Nucl, Sez Bari, Bari, Italy.;Univ Bari Aldo Moro, Bari, Italy.;INFN, Sez Bari, Bari, Italy..
    Belov, A.
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Belov, K.
    NASA, Jet Prop Lab, Pasadena, CA USA..
    Benmessai, K.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Bertainaek, M.
    Univ Turin, Dipartimento Fis, Turin, Italy..
    Biermann, P. L.
    KIT, Karlsruhe, Germany..
    Biktemerova, S.
    Joint Inst Nucl Res, Dubna, Russia..
    Bisconti, F.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Blanc, N.
    Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland..
    Blecki, J.
    Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland..
    Blin-Bondil, S.
    Ecole Polytech, CNRS IN2P3, Omega, Palaiseau, France..
    Bobik, P.
    Inst Expt Phys, Kosice, Slovakia..
    Bogomilov, M.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Bozzo, E.
    ISDC Data Ctr Astrophys, Versoix, Switzerland..
    Bruno, A.
    Univ Bari Aldo Moro, Bari, Italy.;INFN, Sez Bari, Bari, Italy..
    Caballero, K. S.
    Univ Autonoma Chiapas UNACH, Chiapas, Mexico..
    Cafagna, F.
    Ist Nazl Fis Nucl, Sez Bari, Bari, Italy..
    Campana, D.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Capdevielle, J-N
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Capel, Francesca
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Caramete, A.
    ISS, Magurele, Romania..
    Caramete, L.
    ISS, Magurele, Romania..
    Carlson, Per
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Caruso, R.
    Univ Catania, Dipartimento Fis & Astron, Catania, Italy.;Ist Nazl Fis Nucl, Sez Catania, Catania, Italy..
    Casolino, M.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.;RIKEN, Wako, Saitama, Japan..
    Cassardo, C.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Castellina, A.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy..
    Catalano, C.
    Univ Toulouse, CNRS, IRAP, Toulouse, France..
    Catalano, O.
    Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.;INAF Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy..
    Cellino, A.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy..
    Chikawa, M.
    Kinki Univ, Higashi Osaka, Japan..
    Chiritoi, G.
    ISS, Magurele, Romania..
    Christl, M. J.
    NASA, Marshall Space Flight Ctr, Washington, DC 20546 USA..
    Connaughton, V
    Univ Alabama, Huntsville, AL 35899 USA..
    Conti, L.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Cordero, G.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Cotto, G.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Crawford, H. J.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Cremonini, R.
    Univ Turin, Dipartimento Fis, Turin, Italy..
    Csorna, S.
    Vanderbilt Univ, Nashville, TN 37235 USA..
    Cummings, A.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Dagoret-Campagne, S.
    Univ Paris 11, CNRS IN2P3, LAL, Orsay, France..
    De Donato, C.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy..
    de la Taille, C.
    Ecole Polytech, CNRS IN2P3, Omega, Palaiseau, France..
    De Santis, C.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy..
    del Peral, L.
    Univ Alcala UAH, Madrid, Spain..
    Di Martino, M.
    Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy..
    Damian, A. Diaz
    Univ Toulouse, CNRS, IRAP, Toulouse, France..
    Djemil, T.
    Univ Badji Mokhtar, Fac Sci, Dept Phys, LPR, Annaba, Algeria..
    Dutan, I
    ISS, Magurele, Romania..
    Ebersoldt, A.
    KIT, Karlsruhe, Germany..
    Ebisuzaki, T.
    RIKEN, Wako, Saitama, Japan..
    Engel, R.
    KIT, Karlsruhe, Germany..
    Eser, J.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Fenuek, F.
    Univ Turin, Dipartimento Fis, Turin, Italy..
    Fernandez-Gonzalez, S.
    Univ Leon ULE, Leon, Spain..
    Fernandez-Soriano, J.
    Univ Alcala UAH, Madrid, Spain..
    Ferrarese, S.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Flamini, M.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Fornaro, C.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Fouka, M.
    CRAAG, Dept Astron, Algiers, Algeria..
    Franceschi, A.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Franchini, S.
    UPM, Madrid, Spain..
    Fuglesang, Christer
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Fujii, T.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Fujimoto, J.
    High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan..
    Fukushima, M.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Galeotti, P.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Garcia-Ortega, E.
    Univ Leon ULE, Leon, Spain..
    Garipov, G.
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Gascon, E.
    Univ Leon ULE, Leon, Spain..
    Genci, J.
    Tech Univ Kosice TUKE, Kosice, Slovakia..
    Giraudo, G.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy..
    Gonzalez Alvarado, C.
    INTA, Madrid, Spain..
    Gorodetzky, P.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Greg, R.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Guarino, F.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.;Univ Napoli Federico II, Dipartimento Fis, Naples, Italy..
    Guzman, A.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Hachisu, Y.
    RIKEN, Wako, Saitama, Japan..
    Haiduc, M.
    ISS, Magurele, Romania..
    Harlov, B.
    TsNIIMash, Cent Res Inst Machine Bldg, Korolev, Russia..
    Haungs, A.
    KIT, Karlsruhe, Germany..
    Hernandez Carretero, J.
    Univ Alcala UAH, Madrid, Spain..
    Hidber Cruz, W.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Ikeda, D.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Inoue, N.
    Saitama Univ, Saitama, Japan..
    Inoue, S.
    RIKEN, Wako, Saitama, Japan..
    Isgro, F.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy.;Univ Napoli Federico II, DIETI, Naples, Italy..
    Itow, Y.
    Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Aichi, Japan..
    Jammer, T.
    Univ Tubingen, Kepler Ctr, Expt Phys Inst, Tubingen, Germany..
    Jeong, S.
    Sungkyunkwan Univ, Seoul, South Korea..
    Joven, E.
    IAC, Tenerife, Spain..
    Judd, E. G.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Jung, A.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Jochum, J.
    Univ Tubingen, Kepler Ctr, Expt Phys Inst, Tubingen, Germany..
    Kajino, F.
    Konan Univ, Kobe, Hyogo, Japan..
    Kajino, T.
    Natl Astron Observ, Mitaka, Tokyo, Japan..
    Kalli, S.
    Univ Msila, Fac Sci, Dept Phys, Msila, Algeria..
    Kaneko, I
    RIKEN, Wako, Saitama, Japan..
    Karadzhov, Y.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Karczmarczyk, J.
    Natl Ctr Nucl Res, Lodz, Poland..
    Katahira, K.
    RIKEN, Wako, Saitama, Japan..
    Kawai, K.
    RIKEN, Wako, Saitama, Japan..
    Kawasaki, Y.
    RIKEN, Wako, Saitama, Japan..
    Kedadra, A.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Khales, H.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Khrenov, B. A.
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Kim, Jeong-Sook
    Korea Astron & Space Sci Inst KASI, Daejeon, South Korea..
    Kim, Soon-Wook
    Korea Astron & Space Sci Inst KASI, Daejeon, South Korea..
    Kleifges, M.
    KIT, Karlsruhe, Germany..
    Klimov, P. A.
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Kolev, D.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Krantz, H.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Kreykenbohm, I
    Univ Erlangen Nurnberg, ECAP, Erlangen, Germany..
    Kudela, K.
    Inst Expt Phys, Kosice, Slovakia..
    Kurihara, Y.
    High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan..
    Kusenko, A.
    Univ Tokyo, Tokyo, Japan.;NASA, Jet Prop Lab, Pasadena, CA USA..
    Kuznetsov, E.
    Univ Alabama, Huntsville, AL 35899 USA..
    La Barbera, A.
    Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.;INAF Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy..
    Lachaud, C.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Lahmar, H.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Lakhdari, F.
    UROP CDTA, Res Unit Opt & Photon, Setif, Algeria..
    Larson, R.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Larsson, O.
    KTH.
    Lee, J.
    Sungkyunkwan Univ, Seoul, South Korea..
    Licandro, J.
    IAC, Tenerife, Spain..
    Lopez Campano, L.
    Univ Leon ULE, Leon, Spain..
    Maccarone, M. C.
    Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.;INAF Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy..
    Mackovjak, S.
    ISDC Data Ctr Astrophys, Versoix, Switzerland..
    Mahdi, M.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Maravilla, D.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Marcelli, L.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy..
    Marcos, J. L.
    Univ Leon ULE, Leon, Spain..
    Marini, A.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Marszal, W.
    Natl Ctr Nucl Res, Lodz, Poland..
    Martens, K.
    Univ Tokyo, Tokyo, Japan..
    Martin, Y.
    IAC, Tenerife, Spain..
    Martinez, O.
    BUAP, Puebla, Mexico..
    Martucci, M.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Masciantonio, G.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy..
    Mase, K.
    Chiba Univ, Chiba, Japan..
    Mastafa, M.
    Univ Alabama, Huntsville, AL 35899 USA..
    Matev, R.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Matthews, J. N.
    Univ Utah, Salt Lake City, UT USA..
    Mebarki, N.
    Univ Constantine I, Lab Math & Subatom Phys LPMPS, Constantine, Algeria..
    Medina-Tanco, G.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Mendoza, M. A.
    CDA IPN, Mexico City, DF, Mexico..
    Menshikov, A.
    KIT, Karlsruhe, Germany..
    Merino, A.
    Univ Leon ULE, Leon, Spain..
    Meseguer, J.
    UPM, Madrid, Spain..
    Meyer, S. S.
    Univ Chicago, Chicago, IL 60637 USA..
    Mimouni, J.
    Univ Constantine I, Lab Math & Subatom Phys LPMPS, Constantine, Algeria..
    Miyamoto, H.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Mizumoto, Y.
    Natl Astron Observ, Mitaka, Tokyo, Japan..
    Monaco, A.
    Ist Nazl Fis Nucl, Sez Bari, Bari, Italy.;Univ Bari Aldo Moro, Bari, Italy.;INFN, Sez Bari, Bari, Italy..
    Morales de los Rios, J. A.
    Univ Alcala UAH, Madrid, Spain..
    Moretto, C.
    Univ Paris 11, CNRS IN2P3, LAL, Orsay, France..
    Nagataki, S.
    RIKEN, Wako, Saitama, Japan..
    Naitamor, S.
    CRAAG, Dept Astron, Algiers, Algeria..
    Napolitano, T.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Naslund, W.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Nava, R.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Neronov, A.
    ISDC Data Ctr Astrophys, Versoix, Switzerland..
    Nomoto, K.
    Univ Tokyo, Tokyo, Japan..
    Nonaka, T.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Ogawa, T.
    RIKEN, Wako, Saitama, Japan..
    Ogio, S.
    Osaka City Univ, Grad Sch Sci, Osaka, Japan..
    Ohmori, H.
    RIKEN, Wako, Saitama, Japan..
    Olinto, A. , V
    Orleanski, P.
    Polish Acad Sci CBK, Space Res Ctr, Warsaw, Poland..
    Osteria, G.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Pagliaro, A.
    Ist Nazl Fis Nucl, Sez Catania, Catania, Italy.;INAF Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy..
    Painter, W.
    KIT, Karlsruhe, Germany..
    Panasyuk, M. , I
    Panico, B.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Pasqualino, G.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Parizot, E.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Park, I. H.
    Sungkyunkwan Univ, Seoul, South Korea..
    Pastircak, B.
    Inst Expt Phys, Kosice, Slovakia..
    Patzak, T.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Paul, T.
    CUNY, Lehman Coll, Bronx, NY USA..
    Perez-Grande, I
    UPM, Madrid, Spain..
    Perfetto, F.
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Peter, T.
    ETH, Inst Atmospher & Climate Sci, Zurich, Switzerland..
    Picozza, P.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy.;Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy.;RIKEN, Wako, Saitama, Japan..
    Pindado, S.
    UPM, Madrid, Spain..
    Piotrowski, L. W.
    RIKEN, Wako, Saitama, Japan..
    Piraino, S.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Placidi, L.
    UTIU, Dipartimento Ingn, Rome, Italy..
    Plebaniak, Z.
    Natl Ctr Nucl Res, Lodz, Poland..
    Pliego, S.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Pollini, A.
    Swiss Ctr Elect & Microtechnol CSEM, Neuchatel, Switzerland..
    Polonski, Z.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Popescu, E. M.
    ISS, Magurele, Romania..
    Prat, P.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Prevot, G.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Prieto, H.
    Univ Alcala UAH, Madrid, Spain..
    Puehlhofer, G.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Putis, M.
    Inst Expt Phys, Kosice, Slovakia..
    Rabanal, J.
    Univ Paris 11, CNRS IN2P3, LAL, Orsay, France..
    Radu, A. A.
    ISS, Magurele, Romania..
    Reyes, M.
    IAC, Tenerife, Spain..
    Rezazadeh, M.
    Univ Chicago, Chicago, IL 60637 USA..
    Ricci, M.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Rodriguez Frias, M. D.
    Univ Alcala UAH, Madrid, Spain..
    Rodencal, M.
    Univ Alabama, Huntsville, AL 35899 USA..
    Ronga, F.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Roudil, G.
    Univ Toulouse, CNRS, IRAP, Toulouse, France..
    Rusinov, I
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Rybczynski, M.
    Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland..
    Sabau, M. D.
    INTA, Madrid, Spain..
    Saez Cano, G.
    Univ Alcala UAH, Madrid, Spain..
    Sagawa, H.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Sahnoune, Z.
    CRAAG, Dept Astron, Algiers, Algeria..
    Saito, A.
    Kyoto Univ, Kyoto, Japan..
    Sakaki, N.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Salazar, H.
    BUAP, Puebla, Mexico..
    Sanchez Balanzar, J. C.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Sanchez, J. L.
    Univ Leon ULE, Leon, Spain..
    Santangelo, A.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Sanz-Andres, A.
    UPM, Madrid, Spain..
    Sanz Palomino, M.
    INTA, Madrid, Spain..
    Saprykin, O.
    TsNIIMash, Cent Res Inst Machine Bldg, Korolev, Russia..
    Sarazin, F.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Sato, M.
    Hokkaido Univ, Sapporo, Hokkaido, Japan..
    Schanz, T.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Schieler, H.
    KIT, Karlsruhe, Germany..
    Scotti, V
    Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy..
    Selmane, S.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Semikoz, D.
    Univ Paris Diderot, Sorbonne Paris Cite, Obs Paris, CEA Irfu,CNRS IN2P3,APC, Paris, France..
    Serra, M.
    IAC, Tenerife, Spain..
    Sharakin, S.
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Shimizu, H. M.
    Nagoya Univ, Nagoya, Aichi, Japan..
    Shinozaki, K.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Shirahama, T.
    Saitama Univ, Saitama, Japan..
    Spataro, B.
    Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy..
    Stan, I
    ISS, Magurele, Romania..
    Sugiyama, T.
    Nagoya Univ, Nagoya, Aichi, Japan..
    Supanitsky, D.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Suzuki, M.
    JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Szabelska, B.
    Natl Ctr Nucl Res, Lodz, Poland..
    Szabelski, J.
    Natl Ctr Nucl Res, Lodz, Poland..
    Tajima, N.
    RIKEN, Wako, Saitama, Japan..
    Tajima, T.
    RIKEN, Wako, Saitama, Japan..
    Takahashi, Y.
    Hokkaido Univ, Sapporo, Hokkaido, Japan..
    Takami, H.
    High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan..
    Takeda, M.
    Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba, Japan..
    Takizawa, Y.
    RIKEN, Wako, Saitama, Japan..
    Talai, M. C.
    Univ Badji Mokhtar, Fac Sci, Dept Phys, LPR, Annaba, Algeria..
    Tenzer, C.
    Univ Tubingen, Kepler Ctr, Inst Astron & Astrophys, Tubingen, Germany..
    Thomas, S. B.
    Univ Utah, Salt Lake City, UT USA..
    Tibolla, O.
    Ctr Mesoamer Fis Teor MCTP, Chiapas, Mexico..
    Tkachev, L.
    Joint Inst Nucl Res, Dubna, Russia..
    Tokuno, H.
    Tokyo Inst Technol, Interact Res Ctr Sci, Tokyo, Japan..
    Tomida, T.
    Shinshu Univ, Nagano, Japan..
    Tone, N.
    RIKEN, Wako, Saitama, Japan..
    Toscano, S.
    ISDC Data Ctr Astrophys, Versoix, Switzerland..
    Traiche, M.
    Ctr Dev Adv Technologies CDTA, Algiers, Algeria..
    Tsenov, R.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Tsunesada, Y.
    Osaka City Univ, Grad Sch Sci, Osaka, Japan..
    Tsuno, K.
    RIKEN, Wako, Saitama, Japan..
    Tubbs, J.
    Univ Alabama, Huntsville, AL 35899 USA..
    Turriziani, S.
    RIKEN, Wako, Saitama, Japan..
    Uchihori, Y.
    Natl Inst Radiol Sci, Chiba, Japan..
    Vaduvescu, O.
    IAC, Tenerife, Spain..
    Valdes-Galicia, J. F.
    Univ Nacl Autonoma Mexico, Mexico City, DF, Mexico..
    Vallania, P.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Ist Nazl Astrofis, Osservatorio Astrofis Torino, Turin, Italy..
    Vankova, G.
    St Kliment Ohridski Univ Sofia, Sofia, Bulgaria..
    Vigorito, C.
    Ist Nazl Fis Nucl, Sez Torino, Turin, Italy.;Univ Turin, Dipartimento Fis, Turin, Italy..
    Villasenor, L.
    UMSNH, Morelia, Michoacan, Mexico..
    Vlcek, B.
    Univ Alcala UAH, Madrid, Spain..
    Von Ballmoos, P.
    Univ Toulouse, CNRS, IRAP, Toulouse, France..
    Vrabel, M.
    Tech Univ Kosice TUKE, Kosice, Slovakia..
    Wada, S.
    RIKEN, Wako, Saitama, Japan..
    Watanabe, J.
    Natl Astron Observ, Mitaka, Tokyo, Japan..
    Watts, J., Jr.
    Univ Alabama, Huntsville, AL 35899 USA..
    Weber, M.
    KIT, Karlsruhe, Germany..
    Weigand Munoz, R.
    Univ Leon ULE, Leon, Spain..
    Weindl, A.
    KIT, Karlsruhe, Germany..
    Wiencke, L.
    Colorado Sch Mines, Golden, CO 80401 USA..
    Wille, M.
    Univ Erlangen Nurnberg, ECAP, Erlangen, Germany..
    Wilms, J.
    Univ Erlangen Nurnberg, ECAP, Erlangen, Germany..
    Wlodarczyk, Z.
    Jan Kochanowski Univ Humanities & Sci, Inst Phys, Kielce, Poland..
    Yamamoto, T.
    Konan Univ, Kobe, Hyogo, Japan..
    Yang, J.
    Ewha Womans Univ, Seoul, South Korea..
    Yano, H.
    JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa, Japan..
    Yashin, I. , V
    Yonetoku, D.
    Kanazawa Univ, Kanazawa, Ishikawa, Japan..
    Yoshida, S.
    Chiba Univ, Chiba, Japan..
    Young, R.
    NASA, Marshall Space Flight Ctr, Washington, DC 20546 USA..
    Zgura, I. S.
    ISS, Magurele, Romania..
    Zotov, M. Yu
    Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia..
    Marchi, A. Zuccaro
    RIKEN, Wako, Saitama, Japan..
    First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere2018Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, artikel-id P05023Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    EUSO-Balloon is a pathfinder mission for the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). It was launched on the moonless night of the 25(th) of August 2014 from Timmins, Canada. The flight ended successfully after maintaining the target altitude of 38 km for five hours. One part of the mission was a 2.5 hour underflight using a helicopter equipped with three UV light sources (LED, xenon flasher and laser) to perform an inflight calibration and examine the detectors capability to measure tracks moving at the speed of light. We describe the helicopter laser system and details of the underflight as well as how the laser tracks were recorded and found in the data. These are the first recorded laser tracks measured from a fluorescence detector looking down on the atmosphere. Finally, we present a first reconstruction of the direction of the laser tracks relative to the detector.

  • 22. Abreu, H.
    et al.
    Aharrouche, M.
    Aleksa, M.
    Aperio Bella, L.
    Archambault, J. P.
    Lafaye, Remi
    Univ Savoie, LAPP, CNTS IN2P3, Annecy Le Vieux, France .
    al., et
    Performance of the electronic readout of the ATLAS liquid argon calorimeters2010Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 5Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLASdetector hall at CERN.

  • 23.
    Allaire, C.
    et al.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Benitez, J.
    Univ Iowa, Iowa City, IA USA..
    Bomben, M.
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Calderini, G.
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Carulla, M.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Cavallaro, E.
    Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain..
    Falou, A.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Flores, D.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Freeman, P.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Galloway, Z.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Gkougkousis, E. L.
    Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain.;Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Grabas, H.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Grinstein, S.
    Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain..
    Gruey, B.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Guindon, S.
    CERN, Geneva, Switzerland..
    Correia, A. M. Henriques
    CERN, Geneva, Switzerland..
    Hidalgo, S.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Kastanas, Konstatinos A.
    KTH, Skolan för teknikvetenskap (SCI), Fysik. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Labitan, C.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Lacour, D.
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Lange, J.
    Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain..
    Lanni, F.
    Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA..
    Lenzi, B.
    CERN, Geneva, Switzerland..
    Luce, Z.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Makovec, N.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Marchiori, G.
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Masetti, L.
    Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany..
    Merlos, A.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    McKinney-Martinez, F.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Nikolic-Audit, I
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Pellegrini, G.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Polifka, R.
    CERN, Geneva, Switzerland..
    Quirion, D.
    Ctr Nacl Microelect CNM IMB CSIC, Campus UAB, Bellaterra 08193, Barcelona, Spain..
    Rummler, A.
    CERN, Geneva, Switzerland..
    Sadrozinski, H. F-W
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Seiden, A.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Serin, L.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Simion, S.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Spencer, E.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Trincaz-Duvoid, S.
    UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
    Wilder, M.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Zatserklyaniy, A.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Zerwasa, D.
    Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
    Zhao, Y.
    Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA..
    Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector2018Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, artikel-id P06017Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at vertical bar z vertical bar = 3:5 m and covering the region 2:4 < vertical bar eta vertical bar < 4 to help reducing the effect of pile-up. The chosen sensors are arrays of 50 mu m thin Low Gain Avalanche Detectors (LGAD). This paper presents results on single LGAD sensors with a surface area of 1.3 x 1.3 mm(2) and arrays with 2 x 2 pads with a surface area of 2 x 2 mm(2) or 3 x 3 mm(2) each and different implant doses of the p(+) multiplication layer. They are obtained from data collected during a beam test campaign in autumn 2016 with a pion beam of 120 GeV energy at the CERN SPS. In addition to several quantities measured inclusively for each pad, the gain, efficiency and time resolution have been estimated as a function of the position of the incident particle inside the pad by using a beam telescope with a position resolution of few mu m. Different methods to measure the time resolution are compared, yielding consistent results. The sensors with a surface area of 1.3 x 1.3 mm(2) have a time resolution of about 40 ps for a gain of 20 and of about 27 ps for a gain of 50 and fulfil the HGTD requirements. Larger sensors have, as expected, a degraded time resolution. All sensors show very good efficiency and time resolution uniformity.

  • 24. Bazan, A.
    et al.
    Lafaye, Remi
    Univ Savoie, LAPP, CNTS IN2P3, Annecy Le Vieux, France.
    al., et
    ATLAS liquid argon calorimeter back end electronics2007Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The liquid argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25 ns and digitize it at a trigger rate of up to 75 kHz. Off-detector Read Out Driver ( ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  • 25.
    Bennati, Paolo
    et al.
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik.
    Dasu, A.
    Colarieti-Tosti, Massimiliano
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik.
    Lönn, Gustaf
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik.
    Larsson, David
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik.
    Fabbri, A.
    Galasso, M.
    Cinti, M. N.
    Pellegrini, R.
    Pani, R.
    Preliminary study of a new gamma imager for on-line proton range monitoring during proton radiotherapy2017Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, nr 5, artikel-id C05009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We designed and tested new concept imaging devices, based on a thin scintillating crystal, aimed at the online monitoring of the range of protons in tissue during proton radiotherapy. The proposed crystal can guarantee better spatial resolution and lower sensitivity with respect to a thicker one, at the cost of a coarser energy resolution. Two different samples of thin crystals were coupled to a position sensitive photo multiplier tube read out by 64 independent channels electronics. The detector was equipped with a knife-edge Lead collimator that defined a reasonable field of view of about 10 cm in the target. Geant4 Monte Carlo simulations were used to optimize the design of the experimental setup and assess the accuracy of the results. Experimental measurements were carried out at the Skandion Clinic, the recently opened proton beam facility in Uppsala, Sweden. PMMA and water phantoms studies were performed with a first prototype based on a round 6.0 mm thick Cry019 crystal and with a second detector based on a thinner 5 × 5 cm2, 2.0 mm thick LFS crystal. Phantoms were irradiated with mono-energetic proton beams whose energy was in the range between 110 and 160 MeV. According with the simulations and the experimental data, the detector based on LFS crystal seems able to identify the peak of prompt-gamma radiation and its results are in fair agreement with the expected shift of the proton range as a function of energy. The count rate remains one of the most critical limitations of our system, which was able to cope with only about 20% of the clinical dose rate. Nevertheless, we are confident that our study might provide the basis for developing a new full-functional system.

  • 26. Cinti, M. N.
    et al.
    Scafe, R.
    Bennati, Paolo
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik.
    Lo Meo, S.
    Frantellizzi, V.
    Pellegrini, R.
    De Vincentis, G.
    Sacco, D.
    Fabbri, A.
    Pani, R.
    Innovative LuYAP:Ce array for PET imaging2017Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, nr 3, artikel-id C03069Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present an imaging characterization of a 10 x 10 LuYAP array (2 x 2 x 10 mm3 pixels) with an innovative dielectric coating insulation (0.015 mm thick), in view of its possible use in a gamma camera for imaging positron emission tomography (PET) or in similar applications, e.g. as γ-prompt detector in hadron therapy. The particular assembly of this array was realized in order to obtain a packing fraction of 98%, improving detection efficiency and light collection. For imaging purpose, the array has been coupled with a selected Hamamatsu H10966-100 Multi Anode Photomultiplier read out by a customized 64 independent channels electronics. This tube presents a superbialkali photocathode with 38% of quantum efficiency, permitting to enhance energy resolution and consequently image quality. A pixel identification of about 0.5 mm at 662 keV was obtained, highlighting the potentiality of this detector in PET applications.

  • 27.
    Doncel, Maria
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Fysik. Universidad de Salamanca, Spain.
    Cederwall, Bo
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.
    Martin, S.
    Quintana, B.
    Gadea, A.
    Farnea, E.
    Algora, A.
    Conceptual design of a high resolution Ge array with tracking and imaging capabilities for the DESPEC (FAIR) experiment2015Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, artikel-id P06010Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present results of Monte Carlo simulations for the conceptual design of the high-resolution DESPEC Germanium Array Spectrometer (DEGAS) proposed for the Facility for Ion and Antiproton Research (FAIR) under construction at Darmstadt, Germany. The project is carried out in three phases, although only results for the two first phases will be addressed in this work. The first phase will consist of a re-arrangement of the EUROBALL cluster detectors previously used in the RISING campaign at GSI. The second phase is based on coupling AGATA-type triple-cluster detectors with EUROBALL cluster detectors in a compact geometry around the active ion implantation target of DESPEC.

  • 28.
    Jackson, Miranda S.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    The PoGOLite control system and software2013Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, nr 4, s. P04008-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The autonomous control system of PoGOLite is presented. PoGOLite is a balloon borne X-ray polarimeter designed to observe point sources. To obtain scientific data with optimal efficiency, independent of the ground connection, the payload control system has been made autonomous in most functions. The overall system architecture and the interconnections between components, as well as the automation philosophy and software, are described. Results of performance tests are given.

  • 29. Jentschel, M.
    et al.
    Blanc, A.
    de France, G.
    Koster, U.
    Leoni, S.
    Mutti, P.
    Simpson, G.
    Soldner, T.
    Ur, C.
    Urban, W.
    Ahmed, S.
    Astier, A.
    Augey, L.
    Back, T.
    Baczyk, P.
    Bajoga, A.
    Balabanski, D.
    Belgya, T.
    Benzoni, G.
    Bernards, C.
    Biswas, D. C.
    Bocchi, G.
    Bottoni, S.
    Britton, R.
    Bruyneel, B.
    Burnett, J.
    Cakirli, R. B.
    Carroll, R.
    Catford, W.
    Cederwall, Bo
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Kärnfysik.
    Celikovic, I.
    Cieplicka-Oryn'czak, N.
    Clement, E.
    Cooper, N.
    Crespi, F.
    Csatlos, M.
    Curien, D.
    Czerwinski, M.
    Danu, L. S.
    Davies, A.
    Didierjean, F.
    Drouet, F.
    Duche'ne, G.
    Ducoin, C.
    Eberhardt, K.
    Erturk, S.
    Fraile, L. M.
    Gottardo, A.
    Grente, L.
    Grocutt, L.
    Guerrero, C.
    Guinet, D.
    Hartig, A. -L
    Henrich, C.
    Ignatov, A.
    Ilieva, S.
    Ivanova, D.
    John, B. V.
    John, R.
    Jolie, J.
    Kisyov, S.
    Krticka, M.
    Konstantinopoulos, T.
    Korgul, A.
    Krasznahorkay, A.
    Kroell, T.
    Kurpeta, J.
    Kuti, I.
    Lalkovski, S.
    Larijani, C.
    Leguillon, R.
    Lica, R.
    Litaize, O.
    Lozeva, R.
    Magron, C.
    Mancuso, C.
    Martinez, E. Ruiz
    Massarczyk, R.
    Mazzocchi, C.
    Melon, B.
    Mengoni, D.
    Michelagnoli, C.
    Million, B.
    Mokry, C.
    Mukhopadhyay, S.
    Mulholland, K.
    Nannini, A.
    Napoli, D. R.
    Olaizola, B.
    Orlandi, R.
    Patel, Z.
    Paziy, V.
    Petrache, C.
    Pfeiffer, M.
    Pietralla, N.
    Podolyak, Z.
    Ramdhane, M.
    Redon, N.
    Regan, P.
    Regis, J. M.
    Regnier, D.
    Oliver, R. J.
    Rudigier, M.
    Runke, J.
    Rzaca-Urban, T.
    Saed-Samii, N.
    Salsac, M. D.
    Scheck, M.
    Schwengner, R.
    Sengele, L.
    Singh, P.
    Smith, J.
    Stezowski, O.
    Szpak, B.
    Thomas, T.
    Thuerauf, M.
    Timar, J.
    Tom, A.
    Tomandl, I.
    Tornyi, T.
    Townsley, C.
    Tuerler, A.
    Valenta, S.
    Vancraeyenest, A.
    Vandone, V.
    Vanhoy, J.
    Vedia, V.
    Warr, N.
    Werner, V.
    Wilmsen, D.
    Wilson, E.
    Zerrouki, T.
    Zielinska, M.
    EXILL - a high-efficiency, high-resolution setup for gamma-spectroscopy at an intense cold neutron beam facility2017Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, artikel-id P11003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of gamma-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 10(8) ns(-1)cm(2) at the target position and negligible neutron halo. The targetwas surrounded by an array of eight to ten anti-Compton shielded EXOGAMClover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectorswere arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 x 10(5) Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico-to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of Ba-133, Co-60 and Eu-152 as well as data from the reactions Al-27(n, gamma)Al-28 and Cl-35(n,gamma)Cl-36 in the energy range from 30 keV up to 10MeV.

  • 30.
    Klamra, Wlodzimierz
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sibczynski, P.
    Moszynski, M.
    Czarnacki, W.
    Kozlov, V.
    Extensive studies on light yield non-proportional response of undoped CeF3 at room and liquid nitrogen temperatures2013Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 8, nr 6, s. P06003-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper properties of various undoped CeF3 scintillators were investigated at room and liquid nitrogen (LN2) temperatures. The study was focused on measurements of radioluminescence spectra, decay time, non-proportional response to X-and gamma-rays, energy and intrinsic resolution at different temperature environment. Surprisingly, all the tested pure CeF3 crystals show non-proportional response up to 5.1 MeV gamma ray energy, which is contrary to the typical nonproportionality observed below 100 keV for most of the inorganic scintillators. The investigation of the phenomenon occurring in CeF3 scintillators would be another step to get a better knowledge of the scintillators nature, which still has not been entirely understood.

  • 31.
    Klamra, Wlodzimierz
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Sibczynski, P.
    Moszynski, M.
    Kozlov, V.
    Light yield nonproportionality of doped CeF3 scintillators2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, s. P07013-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper measurements of emission spectra, light output and nonproportional response of CeF3 scintillators doped with Ca, Sr, Ba and Pr were conducted. Results showed degradation of the light output for the doped samples in comparison with an undoped CeF3. For each scintillator the nonproportional response on gamma radiation showed unusual lack of saturation at 100 keV, as observed previously for undoped CeF3 samples.

  • 32.
    Klamra, Wlodzimierz
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Szczesniak, T.
    Moszynski, M.
    Iwanowska, J.
    Swiderski, L.
    Syntfeld-Kazuch, A.
    Shlegel, V. N.
    Vasiliev, Ya V.
    Galashov, E. N.
    Properties of CdWO4 and ZnWO4 scintillators at liquid nitrogen temperature2012Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 7, nr 3, s. P03011-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Two samples of 10 mm diameter and 10 mm height CdWO4 and ZnWO4 scintillators were studied at room and liquid nitrogen temperatures. At room temperature the crystals were coupled to a Photonis XP3212 photomultiplier. During experiments at low temperatures a Large Area Avalanche Photodiode was used as a photodetector. Measurements of light output, c of the light yield and intrinsic resolution as a function of gamma-ray energies were performed at both temperatures. The non-proportionality for the two crystals reveals temperature dependence, showing a more proportional behavior at liquid nitrogen temperature. Intrinsic energy resolution values for both crystals also show temperature dependence.

  • 33. Kok, A.
    et al.
    Kohout, Z.
    Hansen, T. -E
    Petersson, Sture
    KTH.
    Pospisil, S.
    Rokne, J.
    Slavicek, T.
    Soligard, S.
    Thungström, G.
    Vykydal, Z.
    Silicon sensors with pyramidal structures for neutron imaging2014Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 9, s. C04011-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neutron detection is a valuable tool in nuclear science research, homeland security, quality assurance in nuclear plants and medical applications. Recent developments and near future instrumentations in neutron imaging have a need for sensors with high spatial resolution, dynamic range, sensitivity and background discrimination. Silicon based neutron detectors can potentially fulfil these requirements. In this work, pad and pixel detectors with pyramidal micro-structures have been successfully fabricated that should have an improved detection efficiency when compared to conventional planar devices. Titanium di-boride (TiB2) and lithium fluoride (LiF) were deposited as the neutron converters. Excellent electrical performances were measured on both simple pad and pixel detectors. A selection of pad detectors was examined by alpha spectroscopy. Measurement with thermal neutrons from a 241Am-Be source shows an improvement in relative efficiency of up to 38% when compared to conventional planar devices.

  • 34. Moszynski, Marek
    et al.
    Klamra, Wlodzimierz
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Wolski, Dariusz
    Czarnacki, Wieslaw
    Kapusta, Maciej
    Balcerzyk, Marcin
    Comparative study of PP0275C hybrid photodetector and XP2020Q photomultiplier in scintillation detection2006Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 1, s. P05001-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The properties of a hybrid photodetector (HPD), type PP0275C, produced by Delft Electronic Products B.V., for scintillation detection and spectrometry were studied and compared to a standard XP2020Q photomultiplier. The study was performed for several scintillators, such as NaI(T1), CsI(T1) and LSO(Ce) of different dimensions. The excellent capability of the HPD to resolve single photoelectron events was fully confirmed. However, the study of the HPD with the scintillators showed a dramatically reduced number of photoelectrons and a further deterioration of energy resolution, depending on the size ( diameter or length) of the crystals. For a 10 mm diameter NaI(T1) a number of 5000 +/- 250 photoelectrons/MeV was measured, which corresponds to about 56% of that observed with the XP2020Q with comparable quantum efficiency. An energy resolution of 9.2% for 662 keV gamma-rays from a (137)Cs source as measured with the HPD light readout indicated on a serious degradation, larger than that arising from the statistics of photoelectrons. In conclusion, the study showed that this HPD is optimized for single photon detection but its application to scintillation detection is very limited.

  • 35. Nachtrab, F.
    et al.
    Hofmann, T.
    Speier, C.
    Lucic, J.
    Firsching, M.
    Uhlmann, N.
    Takman, P.
    Heinzl, C.
    Holmberg, Anders
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Krumm, M.
    Sauerwein, C.
    Development of a Timepix based detector for the NanoXCT project2015Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 10, artikel-id C11009Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The NanoXCT EU FP7 project [1] aims at developing a laboratory, i.e. bench top sized X-ray nano-CT system with a large field-of-view (FOV) for non-destructive testing needs in the micro- and nano-technology sector. The targeted voxel size is 50 nm at 0.175 mm FOV, the maximum FOV is 1 mm at 285 nm voxel size. Within the project a suitable X-ray source, detector and manipulation system have been developed. The system concept [2] omits the use of X-ray optics, to be able to provide a large FOV of up to 1 mm and to preserve the flexibility of state-of-the-art micro-CT systems. The targeted resolution will be reached via direct geometric magnification made possible by the development of a specialized high-flux nano-focus transmission X-ray tube. The end-user's demand for elemental analysis will be covered by energy-resolved measurement techniques, in particular a K-edge imaging method. Timepix [3] modules were chosen as the basis for the detector system, since a photon counting detector is advantageous for the long exposure times that come with very small focal spot sizes. Additional advantages are the small pixel size and adjustable energy threshold. To fulfill the requirements on field-of-view, a detector width > 3000 pixels was needed. The NanoXCT detector consists of four Hexa modules with 500 mu m silicon sensors supplied by X-ray Imaging Europe. An adapter board was developed to connect all four modules to one Fitpix3 readout. The final detector has an active area of 3072 x 512 pixels or approximately 17 x 3 cm(2). In this contribution we present the development of the Timepix based NanoXCT detector, it's application in the NanoXCT project for CT and material specific measurements and the current status of results.

  • 36. Pani, R.
    et al.
    Colarieti-Tosti, Massimiliano
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildteknik.
    Cinti, M. N.
    Polito, C.
    Trigila, C.
    Ridolfi, S.
    Investigation of radiation detection properties of CRY-018 and CRY-019 scintillators for medical imaging2016Ingår i: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 11, artikel-id P09010Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During the last years the research for new scintillation crystals has been crucial for the improvement of imaging performance in nuclear medicine applications. Crytur company has recently released two new scintillators named CRY-018 and CRY-019 which are non hygroscopic, have short decay time and low refraction index. They represent the ideal candidates to substitute NaI:Tl and BGO crystals in future PET ad SPECT applications. The purpose of this work is to characterize this unknown crystals, look for possible applications in imaging for nuclear medicine. The results of this work were compared with the results obtained with a LaBr3:ce scintillation crystal. This particular crystal is used as a comparison benchmark because of its strong linear pulse height uniformity response and high energy resolution. Measurements have been performed with a high count rate which is typical for medical applications. Irradiation of the crystals have been performed in three different geometries and in a photon energy range suitable with SPECT and PET applications. The experimental results identify the CRY-018 as an Yttrium and Silicon mixture and the CRY-019 with as Lutetium and Silicon one. Moreover a light yield of about 45% of LaBr3 one, was obtained for both the CRY-018 and CRY-019. This is one of the higher light yield between most of the scintillation crystals usually used in nuclear medicine. Both crystals are characterized by a non-proportionality in the pulse height linearity response. Energy resolutions of 7.4% for CRY-018 and 8.4% for CRY-019 at 661 keV, have been measured. The intrinsic component of the energy resolution has been esteemed for all three scintillators. An intrinsic detection efficiency of about 45% at 122 keV for CRY-018 and 14% at 661 keV for CRY-019 has been measured. Compared with LaBr3:Ce efficiency, which is highly deteriorated by the coating required by the hygroscopicity, CRY-018 and CRY-019 are really interesting considering that these two samples are only 6 mm thick. Crytur's crystals seem to be suitable for nuclear medicine applications.

1 - 36 av 36
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf