Change search
Refine search result
12 1 - 50 of 90
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Albertsson, Galina
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Teng, Lidong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Björkman, Bo
    Seetharaman, Seshadri
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Engström, Fredrik
    Effect of Low Oxygen Partial Pressure on the Chromium Partition in CaO-MgO-SiO2-Cr2O3-Al2O3 Synthetic Slag at Elevated Temperatures2013In: Steel Research International, ISSN 1611-3683, Vol. 84, no 7, 670-679 p.Article in journal (Refereed)
    Abstract [en]

    The objective of the present work is to get an understanding of the impact of Al2O3 addition on the phase relationships in the CaO-MgO-Al2O3-SiO2-Cr2O3 slags at low oxygen partial pressures (P-O2 = 10(-4) Pa), with a view to control the precipitation of Cr-spinel in the slag. The equilibrium phases in CaO-MgO-Al2O3-SiO2-Cr2O3 slag system in the range on 1673-1873 K have been investigated. The compositions close to the industrial slag systems were chosen. The Cr2O3 content was fixed at 6 wt% and MgO at 8 wt%. Al2O3 contents in the slag were varied in the range of 3-12 wt%. The basicity (CaO/SiO2) of slag was set to 1.6. Gas/slag equilibrium technique was adopted. The samples were heated to 1873 K and soaked at this temperature for 24 h. The samples were then slow cooled to 1673 K and equilibrated for an additional 24 h. The oxygen partial pressure was kept at 10(-4) Pa. A gas mixture of CO/CO2 was used to control the oxygen partial pressure. After the equilibration, the samples were quenched in water. The chromium distribution and phase compositions in the quenched slags were studied using SEM-WDS and XRD techniques. The results were compared with the phase equilibrium calculations obtained from FACTSAGE software and the samples equilibrated in air. The size of spinel crystals increased drastically after slow cooling followed by annealing compared to samples being quenched after soaking at 1873 K. It was also found that low oxygen partial pressure had a strong impact on chromium partition. The amount of spinel phase increases with increased Al2O3 content.

  • 2.
    Allertz, Carl
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Kojola, Niklas
    Hui, Wang
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    A Study of Nitrogen Pickup from the Slag during Waiting Time of Ladle Treatment2014In: Steel Research International, ISSN 1611-3683, Vol. 85, no 4, 689-696 p.Article in journal (Refereed)
    Abstract [en]

    An investigation of the nitrogen pickup of liquid steel from ladle slag after vacuum degassing was made. Nitride capacities, C-N, of a number of ladle slags were determined at controlled nitrogen and oxygen potentials at 1873K. The nitride capacities in the composition range studied were found to be very low. In accordance with the literature, the nitride capacity was found to increase with increasing SiO2 content. Industrial trials were performed. The nitrogen content of the steel was determined before and after vacuum degassing as well as after the waiting period. Three different trends of the variation of nitrogen content in the steel were observed. Both the laboratory study and the industrial trials revealed that the transfer of nitrogen from slag to steel was not the reason for nitrogen pickup in the steel subsequent to vacuum degassing.

  • 3. Almcrantz, M.
    et al.
    Andersson, Margareta A.T.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Determination of inclusion characteristics in the Asea-SKF process using the modified spark-induced OES technique as a complement in studying the influence of top slag composition2005In: Steel Research International, ISSN 1611-3683, Vol. 76, no 9, 624-634 p.Article in journal (Refereed)
    Abstract [en]

    The spark-induced modified optical emission spectroscopy (OES) technique developed by Ovako Steel makes it possible to rapidly determine inclusion characteristics in steel samples. In earlier investigations using the modified spark-induced OES technique for steel samples taken from billets, predicted oxygen contents agreed well with results from conventional melt extraction analyses. In this investigation, samples taken during ladle treatment in an ASEA-SKF ladle furnace were analysed using the modified OES technique. When comparing the results with inclusion characteristics determined by conventional analysis, similar trends were found. Plant trials were also carried out where three different top slag compositions were used. The purpose was to evaluate if the modified OES technique can be used to study the effect of changes in the refining operation on inclusion characteristics. Results indicated that the modified OES technique could be used to determine the effect of a changed slag composition on the inclusion characteristics in the steel. Since the modified OES method provides rapid feedback of inclusion characteristics, it has the potential of being used for faster optimisation of ladle refining operations.

  • 4.
    Andersson, Emma
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    The Effect of CaF2 in the Slag in Ladle Refining2009In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 80, no 8, 544-551 p.Article in journal (Refereed)
    Abstract [en]

    Industrial experiments were conducted in ladle treatment at SSAB Oxelosund aiming at a reduction and even elimination of CaF2 as a component in synthetic slag formers. The effects of the presence of CaF2 on sulphur refining, lining wear as well as types and amount of inclusions were examined. The results of the plant trials indicated that the new slag without CaF2 had enough capacity for sulphur removal. On the other hand, the presence of CaF2 as a flux in the slag resulted in profound lining wear. It was also found that both the number and the types of non-metallic inclusions were not affected by the elimination of CaF2 from synthetic slag. The origins of different types of inclusions were also analysed on the basis of the experimental results. The analysis supported the finding that the presence of CaF2 had little effect on inclusions.

  • 5.
    Andersson, Nils
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Tilliander, Anders
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jonsson, Lage
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Investigating the effectof slag on decarburization in an AOD converter using a fundamental model2013In: Steel Research International, ISSN 1611-3683, Vol. 84, no 2, 169-177 p.Article in journal (Refereed)
    Abstract [en]

    A high-temperature thermodynamics model has been coupled with a fundamental mathematical model describing the fluid flow, where boundary conditions were chosen based on data for an industrial AOD converter. Using this model, the effect of both slag phases (a liquid part and a solid part) on the decarburization was studied. More specifically, the separation of chromium oxide to liquid slag as well as the effect of the amount of rigid top slag (solid)on the decarburization was investigated. The liquid slag was considered with respect to the uptake of chromium oxide, while the rigid top slag was only considered with respect to the increase of the metallostatic pressure in the steel melt. The results suggest that separation of chromium oxide to liquid slag results in a decreased decarburization rate. The same conclusion can be drawn with respect to the amount of solid top slag.

  • 6.
    Andersson, Nils Å. I.
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Tilliander, Anders
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jonsson, Lage T. I.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    An in-Depth Model-Based Analysis of Decarburization in the AOD Process2012In: Steel Research International, ISSN 1611-3683, Vol. 83, no 11, 1039-1052 p.Article in journal (Refereed)
    Abstract [en]

    A previously reported flow and reaction model for an argon-oxygen decarburization converter was extended to also include a thermodynamic description. An in-depth study of the model results has been conducted to answer how concentrations of elements and species in the converter at different locations change with time. This may contribute to the understanding of the mechanisms of the refining procedure in the argon-oxygen decarburization process. The refining procedure includes several step-wise changes of an injected gas composition to higher and higher inert gas ratio, called step changes. A step change leads to a decreased partial pressure of carbon monoxide and maintains the decarburization at a higher efficiency. The results shows early and late concentration profiles for the first injection step and suggests a way to determine when a step change should be made. Moreover, the step change could be determined by calculating the carbon concentration profiles and deciding when the carbon concentration gradients start to diminish.

  • 7.
    Andersson, Nils Å. I.
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Tilliander, Anders
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jonsson, Lage T. I.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Investigating the effect of slag on decarburization in an AOD coverter using a fundamental modelIn: Steel Research International, ISSN 1611-3683Article in journal (Other academic)
  • 8.
    Aune, Ragnhild E.
    et al.
    Norwegian Univ Sci & Technol NTNU, Norway.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    The Seetharaman Seminar June 14-15, 2010 in Stockholm, Sweden: Materials Processing Towards Properties2010In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 81, no 10, 811- p.Article in journal (Other academic)
  • 9.
    Bai, Haitong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Ersson, Mikael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Experimental Validation and Numerical Analysis of the Swirling Flow in a Submerged Entry Nozzle and Mold by using a Reverse TurboSwirl in a Billet Continuous Casting Process2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArticle in journal (Refereed)
    Abstract [en]

    As an alternative to some traditional methods to generate a swirling flow in the continuous casting process, the use of a new swirling flow generator, TurboSwirl, was studied. Specifically, a reversed TurboSwirl device was designed as part of a submerged entry nozzle (SEN) for a round billet continuous casting process. Mathematical modelling was used to investigate this new design and a water model experiment was carried out to validate the mathematical model. The predicted velocities by the turbulence models: realizable k-ε model, Reynold stress model (RSM) and detached eddy simulation (DES) were compared to the measured results from an ultrasound velocity profile (UVP) method. The DES model could give the best prediction inside the SEN and had a deviation less than 3.1% compared to the measured results. Moreover, based on the validated mathematical model and the new design of the SEN, the effect of the swirling flow generated by the reverse TurboSwirl on the flow field of the SEN and mold was compared to the design of the electromagnetic swirl flow generator (EMSFG). A very strong swirling flow in the SEN and a stable flow pattern in the mold could be obtained by the reverse TurboSwirl compared to the EMSFG. 

  • 10.
    Bi, Yanyan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Three-dimensional investigations of inclusions in ferroalloys2014In: Steel Research International, ISSN 1611-3683, Vol. 85, no 4, 659-669 p.Article in journal (Refereed)
    Abstract [en]

    As the requirements on material properties increase, there has been a demand on an additional knowledge on the effect of impurities in the ferroalloys on the properties. Thus, the number, morphology, size, and composition of inclusions in four different ferroalloys (FeTi, FeNb, FeSi, and SiMn) were investigated. This was done in three dimensions (3D) by using scanning electron microscopy in combination with energy dispersive spectroscopy after electrolytic extraction of the ferroalloy samples. The non-metallic and metallic inclusions were successfully analyzed on the surface of film filter. Thereafter, the particle size distribution was plotted for most of the non-metallic inclusions. The non-metallic inclusions were found to be REM oxides in FeTi, FeSi, and SiMn, Al2O3, Ti-Nb-S-O oxides in FeNb and silicon oxides in SiMn. Moreover, the intermetallic inclusions were found to be a Ti-Fe phase in FeTi, Ca-Si, and Fe-Si-Ti phases in FeSi and a Mn-Si phase in SiMn. In addition, the almost pure single metallic phases were found to be Ti in FeTi, Nb in FeNb, and Si in FeSi. As the requirements on material properties increase, the effect of impurities in ferroalloys on the steelmaking process is increasingly becoming more important. The characteristic of inclusions (morphology, number, size, and composition) in ferroalloys investigated in three-dimensional after electrolytic extraction is a good method for studying the evolution of inclusions during steelmaking.

  • 11.
    Chen, Chao
    et al.
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.
    Cheng, Guoguang
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.
    Sun, Haibo
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.
    Hou, Zibing
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Chaina.
    Wang, Xinchao
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing.
    Zhang, Jiaquan
    State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, China.
    Effects of Salt Tracer Amount, Concentration and Kind on the Fluid Flow Behavior in a Hydrodynamic Model of Continuous Casting Tundish2012In: Steel Research International, ISSN 1611-3683, Vol. 83, no 12, 1141-1151 p.Article in journal (Refereed)
    Abstract [en]

    The hydrodynamic modeling method that widely used to simulate the fluid flow was reconsidered and discussed in this paper. The effects of injected salt tracer amount, concentration and kind on the fluid flow behavior in a hydrodynamic model tundish were investigated. The results were compared with the mathematical modeling calculation results, that the tracer density effect was eliminated. The residence time distribution (RTD) curve of tracer introduced deviated to the left side of the calculated curve, besides the deviation was increased as dimensionless tracer amount (the ratio of tracer amount to hydrodynamic model tundish volume) increased from 0.202 × 10−3 to 1.008 × 10−3. The results of tracer concentration study were similar, namely the deviation was increased with concentration increased; on the other hand, the deformation of a “stair-shape” RTD curve occurred when tracer concentration was much lower (at dimensionless tracer amount of 0.168 × 10−3 with converting to saturated solution). Besides, the effect of tracer kind on the accuracy of hydrodynamic modeling was also studied; the measurements of KCl solution with lower density than that of NaCl solution exhibited more of accuracy. Finally, the optimized tracer in hydrodynamic model tundish of present work is saturated KCl solution with dimensionless tracer amount of 0.202 × 10−3.

  • 12.
    Chychko, Andrei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Teng, Lidong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Nzotta, M.
    Seetharaman, Seshadri
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Fe2MoO4 as a precursor material for Mo alloying in steel: (Part II): Upscaling test2011In: Steel Research International, ISSN 1611-3683, Vol. 82, no 8, 886-897 p.Article in journal (Refereed)
    Abstract [en]

    The Mo yield when using three different alloying mixtures (MoO3 +C; MoO3 +C + FeOx; and MoO3+ C + CaO) was tested both in laboratory experiments (16 g and 0.5 kg scale) and industrial trials (3 ton scale). The alloying is based on in-situ formation of compounds of Mo in the mixtures from molybdenite concentrate with industrial grade Fe 2O3. Thermogravimetry (TGA) and X-ray diffraction (XRD) analyses were performed to identify the reduction steps and final products of the alloying mixtures. At least two steps of mass change were discovered during the reduction of all tested mixtures by carbon. The Mo yield for MoO3 + C mixture is 93% which was confirmed by both laboratory and industrial experiments. The Mo yield for MoO3 + C + CaO mixture is around 92% during 16 g scale laboratory and 3 ton scale industrial tests. The best results were obtained in the case of the mixture which contained FeOx, MoO3 and C, resulting in the Mo yield up to 98% at all the experiment scale levels. It was found that the combination of both lower evaporation and fast reduction by carbon of the mixture along with further dissolution in steel are necessary to provide high Mo yield during steel alloying. The calculated mass balance of 3 ton trial heats showed that only a small part of initial Mo amount (8-13 ppm) has gone into slag. Copyright

  • 13. Collin, T
    et al.
    Melander, Arne
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    FEM study of fatigue response of 3-sheet spot welded joints2006In: Steel Research International, ISSN 1611-3683, Vol. 4, no 77, 292-296 p.Article in journal (Refereed)
    Abstract [en]

    The commercial software used for predicting fatigue strength for load-carrying spot welds in sheet structures, like car bodies, is mainly developed for two-sheet joints. The purpose of this work was to study the fatigue properties of three-sheet spot welded joints with a dimensioning method used in the automotive industry and to compare such computational results to those obtained from a more accurate method and to experimental data. Eleven three-sheet, single spot welded specimens were studied using a structural stress approach, followed by shell element simulations, similar to those used in commercial software. These results were compared to calculations based on fine meshed solid element models. Fracture mechanics was used to evaluate the loading conditions at the spot welds. Comparison between the results from the different methods and experimental results for three shear loaded specimens, consisting of triple sheets, found in literature showed good correlation. The shell element method in shear loaded cases gives stress intensities within +35% to -5% of the solid element method results. In peel loaded cases the results differ up to -60%, an under-estimation that leads to an increase of estimated fatigue life up to 65 times.

  • 14.
    Condo, Adolfo Firmino Timoteo
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Eduardo Mondlane University, Mozambique.
    Lindstrom, David
    Kojola, Niklas
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Study on the Effect of Aging on the Ability of Calcium Carbide for Hot Metal Desulfurization2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 9, 1137-1143 p.Article in journal (Refereed)
    Abstract [en]

    Industrial trials and laboratory study are carried out to investigate the effect of aging on the ability of CaC2 in hot metal desulfurization. The industrial trials indicate that the time of storage of calcium carbide within the limit of industrial practice has no appreciable effect on its ability of desulfurization. In the laboratory, samples of CaC2 are prepared by exposing them in air for different times to promote formation of a Ca(OH)(2) outer layer. The thickness of Ca(OH)(2) increases with exposing time. Thereafter, the aged CaC2 samples are employed for desulfurization at 1673 and 1773 K for 8 min. For all the samples after desulfurization, layers of graphite and CaO are found between the remaining CaC2 particles and the outer CaS layer. The desulfurization using CaC2 is found to proceed by the diffusion of calcium vapor through the product layers and then its reaction with dissolved sulfur in the hot metal at the surface. No appreciable difference in the thickness of the CaS layer is found with the samples exposed to air for different times. This finding explains well the industrial results.

  • 15.
    Davydenko, Arkadiy
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Lindstrand, Gunnar
    Outokompu.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Investigation of Slag Foaming by Additions of Briquettes in the EAF during Stainless Steel Production2015In: Steel Research International, ISSN 1611-3683, Vol. 86, no 2, 146-153 p.Article in journal (Refereed)
    Abstract [en]

    Nowadays, an effective application of energy required for stainless steel production in the electric arc furnace (EAF) by a slag foaming practice and recycling of waste products play two of the most significant roles for a sustainable steel production. In this study, briquettes were used to obtain a combined slag foaming and waste product reduction in the EAF process. Briquettes with different densities produced partly from waste products were tested in an industrial scale to study slag foaming in the EAF process during stainless steel production. The slag foaming tendency was determined based on visual estimations of slag foaming, evaluations of the slag density before and after addition of different briquettes, and by calculating a foaming index. The influence of the main parameters of briquettes (composition, density) and the furnace slag (composition, basicity, and, etc.) on slag foaming was studied. It was found that both heavy and light briquettes can be used for slag foaming. The heavy briquettes, with FeCr, produce about half the amount of gas compared to the light briquettes, without FeCr. The main part of the gas, >80%, was generated during the first 2-3min, Moreover, the highest slag foaming rate was obtained for slags with a basicity in the range of 1.31-1.49.

  • 16.
    Davydenko, Arkadiy
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Mostafaee, Saman
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy. Ovako Hofors.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Characterization of Briquettes Used for Slag Foaming in the EAF during Stainless Steel Production2014In: Steel Research International, ISSN 1611-3683, Vol. 86, no 2, 137-145 p.Article in journal (Refereed)
    Abstract [en]

    The modern sustainable stainless steel making industry is characterized by different factors such as an efficient utilization of energy in the Electric Arc Furnace (EAF) by a slag foaming practice and an utilization of waste products from its own production facilities. In this study, the foaming briquettes applied for a combined slag foaming and waste product reduction in the EAF are characterized. The recipes of the briquettes were made based on a literature review and previous experience. Afterwards, the composition and density of briquettes were estimated and compared to calculated data. Moreover, weight reduction experiments were made on a laboratory scale at temperatures up to 1500-°C in an argon atmosphere in order to characterize the products (metal, slag, and gas). Based on these results, the calculations were compared with experimental data. The following main results were found: (i) the density of briquettes can be successfully verified, (ii) briquettes have different mechanical properties depending on the materials used for production of briquettes, and (iii) the briquettes yield in different amounts of metal and gas. Moreover, it was found that light briquettes (without FeCr) produced almost double the amount of gas in comparison with heavy briquettes (containing FeCr); valuable metals can be recovered from briquettes, and recipes of briquettes can be optimized based on the amount of metal droplets in briquettes and the total utilization of carbon. This study is focused on a characterization of briquettes, which are used for slag foaming and waste product reduction in the Electric Arc Furnace (EAF) during the stainless steel production. The experimental data is compared with calculations according to the obtained results.

  • 17.
    Deng, Tengfei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Glaser, Björn
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Experimental Design for the Mechanism Study of Lime Dissolution in Liquid Slag2012In: Steel Research International, ISSN 1611-3683, Vol. 83, no 3, 259-268 p.Article in journal (Refereed)
    Abstract [en]

    The applicability of rotating rod technique in the study of lime dissolution in slag was investigated. Both computational fluid dynamic (CFD) and cold model experiments showed that the mass transfer due to radial velocity introduced by forced convection was zero if the rod was long. The mass transfer by forced convection was also less important in comparison with natural convection and diffusion when the rod was half length of the height of the bath. This finding was in accordance with the criteria put forward by the original work that the method could only be applicable when a thin disk (instead of rod) with big diameter and big liquid bath were used. To study the lime dissolution by forced convection a new experimental technique was developed. A cube was placed in the slag that was eccentrically stirred. The whole system, viz. the sample along with the slag could be quenched. The new technique could study the effect of forced convection on the dissolution. The microscopic study on the quenched slag-lime samples could reveal the dissolution mechanism successfully.

  • 18.
    Deng, Zhiyin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Glaser, Björn
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Bombeck, M. A.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Mechanism Study of the Blocking of Ladle Well Due to Sintering of Filler Sand2015In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArticle in journal (Refereed)
    Abstract [en]

    The present work is aimed at a mechanism study of blocking of ladle well by filler sand. Laboratory experiments are carried out using two different chromite-based filler sands. The interaction between the liquid steel and the sand is also studied by using steels containing different contents of Mn and Al. The reaction between the silica phase and the chromite phase is found to be the main mechanism for the sintering of sand. The reaction results in a liquid oxide phase, which becomes the binding phase between the solid oxide grains. The amount of silica phase and its grain size are found to have great impact on the formation of the liquid oxide phase. Faster formation of the liquid oxide phase leads to more serious sintering of the sand. It is found that liquid steel can hardly infiltrate into sand. On the other hand, the presence of steel considerably increases the amount of liquid phase and enhances the sintering of the sand.

  • 19.
    Deng, Zhiyin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling. School of Metallurgy, Northeastern University, China.
    Glaser, Björn
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Bombeck, Marc André
    PURMETALL GmbH & Co. KG, 46049 Oberhausen, Germany.
    Du, Sichen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Effects of Temperature and Holding Time on the Sintering of Ladle Filler Sand with Liquid Steel2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 7, 921-929 p.Article in journal (Refereed)
    Abstract [en]

    In the present work the effects of temperature and holding time on the sintering of ladle filler sand are studied. Laboratory experiments are carried out using pellets made of chromite based filler sand and two steel grades containing different contents of Mn and Al. It is found that the liquid steel plays a major role in the sintering behavior. The results also show that the amount of liquid phase in the sintered sand pellets increases with the increase of temperature and holding time. The Al2O3 content increases substantially in the chromite phase (spinel), especially in the region close to the liquid phase, when the temperature is high enough or when the holding time is long enough. Higher content of dissolved Al would accelerate the formation of the alumina-rich chromite.

  • 20.
    Ek, Mattias
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Study of Penetration Depth and Droplet Behavior in the Case of a Gas Jet Impinging on the Surface of Molten Metal using Liquid Ga-In-Sn2012In: Steel Research International, ISSN 1611-3683, Vol. 83, no 7, 678-685 p.Article in journal (Refereed)
    Abstract [en]

    To study the penetration depth in the case of a gas jet impinging on the surface of liquid steel, cold model experiments were carried out using a liquid alloy GaInSn, which had similar physical properties as liquid steel. A HCl solution was used to simulate the top slag. The top phase was found to have appreciable effect on the penetration depth. Comparison of the experimental data with the predictions of the existing models indicated that most the model predictions deviated from the experimental results at higher lance heights and gas flow rates. New model parameter was suggested based on the present experimental data. The observation of the formation and movement of metal droplets generated by the gas jet was also made. The velocity of the droplet was found to be at a level only about 1% of the terminal velocity. This low velocity suggested that the turbulent viscosity played important role and the droplets could have long resident time in the slag.

  • 21.
    El-Bealy, Mostafa O.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
    Air-Water Mist and Homogeneity Degree of Spray Cooling Zones for Improving Quality in Continuous Casting of Steel2011In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 82, no 10, 1187-1206 p.Article in journal (Refereed)
    Abstract [en]

    A theoretical investigation used previous experimental works for validation of model predications and for studying the effect of different nozzle designs on the quality of continuously cast steel slabs has been undertaken. This is by optimizing the homogeneity degree of cooling pattern "HDCP'' between a pair of rolls. The idea behind this technique is to maximize the solid shell resistance against thermo-metallurgical and mechanical stresses and therefore minimizes the defects generated in different cooling zones. A 2-D mathematical model of thermal, solidification, solid shell resistance and cooling conditions has been developed. The model determines the temperature distributions, the different phases associated with the solidification and three phase peritectic reaction L + delta -> gamma of Fe-0.12%C steel alloy as well as isotherms. The effect of different cooling patterns for various spray cooling systems on the homogeneity degree and solid shell resistance are examined. In additional to traditional water and air-water (AWM) nozzles, a new design of air-water mist nozzle has been proposed to improve the homogeneity degree of spray cooling system. The results indicate generally that the increasing in the homogeneity degree of cooling conditions is proportional to the increasing in the solid shell resistance and therefore to the improving of slab quality. Model predications of different effects of different nozzle designs on the surface and inner quality levels are compared and discussed in the mold and secondary spray cooling zones.

  • 22.
    El-Bealy, Mostafa Omar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
    Advanced solute conservation equations for dendritic solidification processes: Part I: Experiments and theory2013In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 84, no 6, 565-583 p.Article in journal (Refereed)
    Abstract [en]

    The macrosegregation formed in dendritic equiaxed structure during early stages of solidification of Al-4.5%Cu alloy has been studied by experimental work and by metallurgical study of cast samples taken from the experimental work. An experimental work was conducted to study the coupled effect of natural convection streams, interdendritic strain and mushy permeability of Al-4.5%Cu aluminum alloy solidified in horizontal rectangular parallelepiped cavity at different superheats. The metallurgical study includes macro-microstructure evaluation, measurements of grain size of equiaxed crystals and macrosegregation analysis. This study shows that the level of surface segregation exhibiting as positive segregation varies with superheat whereas the rest of inner ingot areas show the light fluctuation in segregation values. In addition to experimental work, there is a mathematical study which contains a complete derivation of local solute redistribution equations based on Fleming's approach under different solute diffusion mechanisms in the dendritic solid. This derivation includes also the effects of interdendritic strain and mushy permeability on the local solute redistribution distribution. Owing to the length of the study, it is presented in two parts. The first part describes the experimental work and its results as well as a detail derivation of solute conservation equations. This part also involves comparison and discussion between existing and proposed solute conservation equations. The second part contains the mathematical analyses of a two dimensional mathematical model of fluid flow, heat flow, solidification, interdendritic strain and macrosegregation. Also, this part also contains the numerical simulations by using finite difference technique "FDT" to create convection patterns, heat transfer, interdendritic strain, and macrosegregation distributions. This part also includes comparisons between the available measurements and model predications as well as full discussion of different model simulations. The mechanism of interdendritic strain generation and macrosegregation formation during solidification of dendritic equiaxed structure under different diffusion mechanisms in dendritic solid has also been explained and discussed. Macrosegregation in dendritic equiaxed structure during the early stages of solidification of Al-4.5%Cu alloy has been studied experimentally. The metallurgical study includes macro-microstructure evaluation, measurements of grain size of equiaxed crystals, and macrosegregation analysis. In addition to the experimental work, there is a mathematical study which contains a complete derivation of local solute redistribution equations based on Fleming's approach under different solute diffusion mechanisms in the dendritic solid.

  • 23.
    El-Bealy, Mostafa Omar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Processing.
    Advanced solute conservation equations for dendritic solidification processes part II: Numerical simulations and comparisons2013In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 84, no 6, 584-606 p.Article in journal (Refereed)
    Abstract [en]

    The mathematical model of derived solute equations in part I for equiaxed dendritic solidification with melt convection streams and interdendritic thermo-metallurgical strain is applied numerically to predict macrosegregation distributions with different diffusing mechanisms in dendritic solid. Numerical and experimental results are present for solidification of a Al-4.5% Cu alloy inside horizontal rectangular cavity at different superheats. The numerical simulations were performed by using simpler method developed by Patanker. The experiments were conducted to measure the cooling curves via thermocouples and the metallurgical examinations to measure the grain size and macrosegregation distributions in Part I. Preliminary validity of the model is demonstrated by the qualitative and quantitative agreements between the measurements and predications of cooling curves and predicted macrosegregation distributions including mushy permeability and interdendritic strain. In addition, several important features of macrosegregation in equiaxed dendritic solidification are identified through this combined experimental and numerical study. Also, quantitative agreements between the numerical simulations and experiments reveal several areas for future research work. The differences and errors between predicted macrosegregation results under different diffusing mechanisms have been discussed. The mathematical model of derived solute equations in Part I for equiaxed dendritic solidification with melt convection streams and thermal is applied numerically to predict macrosegregation distributions with different diffusing mechanisms in dendritic solid. Numerical and experimental results are present for solidification of a Al-4.5% Cu alloy inside horizontal rectangular cavity at different superheats.

  • 24.
    Elfsberg, Jessica
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Matsushita, Taishi
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Determination of the interfacial tension between commercial steel grades and mould flux slags by experiments and by empirical modelsIn: Steel Research International, ISSN 1611-3683Article in journal (Other academic)
  • 25.
    Eriksson, Conny
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Flexibility and utilization of roll pass sequences in some Swedish wire rod mills2005In: Steel Research International, ISSN 1611-3683, Vol. 76, no 9, 635-643 p.Article in journal (Refereed)
    Abstract [en]

    A computer program has been developed to calculate the working range for series of two-symmetrical grooves including oval, round, false round, square and diamond shapes. Eight different pass designs are compared. The geometry of rolling or entry bar height over roll radius is in the range 0.09-0.26 for squares, 0.10-0.23 for false round and 0.06-0.21 for ovals. Square-oval and round-oval have similar flexibility, but in the round-oval sequence, the flexibility can be extended by opening up the gaps and run the rounds as false rounds. In the square-oval sequence the flexibility can be improved by making the squares with larger corner radii but the reduction capability will be reduced. The false round-oval sequence has the best flexibility and the working range can be extended by making "flatter" ovals. Improvement of the roll pass design in Fagersta Stainless AB has made it possible to roll wire rod with higher flexibility and better quality.

  • 26.
    Eriksson, Conny
    KTH, Superseded Departments, Production Engineering.
    Surface cracks in wire rod rolling2004In: Steel Research International, ISSN 1611-3683, Vol. 75, no 12, 818-828 p.Article in journal (Refereed)
    Abstract [en]

    Surface defects in wire rod and bar rolling are common and well-known to mill people. Nowadays, surface defects are not accepted on high-alloyed steel wire rods. The steel making, casting and rolling processes give rise to defects. Also, the final handling of the wire and bar can destroy the surface. In this work, artificial V-shaped cracks in the longitudinal direction were investigated for different reduction series. The false round-oval series are known as a series for high quality steels and are usually better than square-oval series. Experiments confirmed that in the false round-oval sequences a surface crack in the groove bottom may open up during rolling at the same time as its depth is reduced, which is a beneficial situation. Surface cracks found at 45degrees to the rolling direction, at groove "corners" and on free surfaces will be closed or reduced in depth. The closing of cracks is detrimental since the cracks usually hide rolled-in oxides beneath the bar surface. The experiments showed that for the subsequent oval-false round sequence the visible crack at the groove bottom will be closed and become shallower. The cracks at 45degrees and on the free sides will also be closed, but deeper causing a serious surface defect. An FE-analysis was carried out, explaining the experimental results. Flat oval grooves are better than round ovals and false rounds are superior to square for opening and decreasing the depth of a longitudinal crack. It is difficult to eliminate a surface defect constituting a closed crack.

  • 27.
    Frenning, Annie
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Tilliander, A.
    Kitamura, S.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    A study of the decarburization rate in bulk and droplets during top lance blowingIn: Steel Research International, ISSN 1611-3683Article in journal (Other academic)
  • 28.
    Glaser, Bjoern
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Gornerup, Marten
    Du, Sichen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Fluid Flow and Heat Transfer in the Ladle during Teeming2011In: Steel Research International, ISSN 1611-3683, Vol. 82, no 7, 827-835 p.Article in journal (Refereed)
    Abstract [en]

    A two dimensional axisymmetric model was developed to predict the heat flux in a steelmaking ladle during the teeming process. The model predicts dynamically the flow fields in both liquid phase and gas phase along with the movement of the liquid upper surface. The model also predicts the temperature distributions in the liquid metal, gas phase and all layers in the ladle wall. Industrial measurements using infrared radiation camera inside the ladle after teeming and at the wall outside the ladle during the whole process were carried out. The model predictions were found to be in agreement with the measured data. It was found that the heat transfer to the surrounding atmosphere and the conductivity of the highly insulating layer were the most important factors for the heat loss. The decrease of the thickness of the working lining was found to have limited effect on the total heat flux.

  • 29.
    Glaser, Björn
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Görnerup, Mårten
    Metsol AB.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Thermal Modelling of the Ladle Preheating Process2011In: Steel Research International, ISSN 1611-3683, Vol. 82, no 12, 1425-1434 p.Article in journal (Refereed)
    Abstract [en]

    To predict the temperature distribution in the ladle wall during the preheating process a two dimensional model was developed. The model calculated the heat transfer and the velocity field in the gas phase inside the ladle as well as the heat transfer in the solid walls during the preheating process. Measurements of the temperature in an industrial lade were carried out using an infrared radiation (IR) camera. The measurements were made inside and outside the ladle. The model predictions were found to be in reasonably good agreement with the measured temperatures. It was found that the preheating time could be minimized when the working lining became thinner. The effect of the distance between the lid and the ladle was also studied by the model. The results indicated that there was no significant temperature change on the upper side wall of the ladle. On the lower side wall and bottom the temperature changed slightly. The temperature difference in the lower part of the ladle could be explained by the larger flame distance from the bottom layer.

  • 30.
    Glaser, Björn
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Ma, Luyao
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Determination of Experimental Conditions for Applying Hot Wire Method to Thermal Conductivity of Slag2013In: Steel Research International, ISSN 1611-3683, Vol. 84, no 7, 649-663 p.Article in journal (Refereed)
    Abstract [en]

    In order to apply the hot wire method for metallurgical slags at steelmaking temperatures, a numerical model was developed, cold model experiments were conducted and test measurements using a high temperature experimental setup were carried out. To minimize natural convection and obtain more reliable measurements, the crucible diameter, the hot-wire diameter, the applied current, the position of the wire in the crucible, and the cooling on the upper surface of the crucible were studied. Investigations into the choice of sheathing material of the circuit exposed to the slag were also made. It was found that only certain materials were suitable for slag measurements depending on slag composition and temperature. The electrical resistivity of the hot wire was measured to make the thermal conductivity calculation more reliable. The wire diameter also played a major role, because of the heat generation per surface area. The thermal conductivity should be derived from the values measured during the first seconds. In this initial stage, the effect of the natural convection as a function of the wire position in the crucible, the cooling on the top surface, and the diameter of the crucible are negligible. A compromise has to be made in choosing the electrical current, since higher current results in higher sensitivity but at the same time in more natural convection.

  • 31.
    Gustavsson, Joel
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Shoyeb, M.
    Sarma, D. S.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Characteristics of metal droplets in slag tapped from the blast furnace2006In: Steel Research International, ISSN 1611-3683, Vol. 77, no 1, 5-13 p.Article in journal (Refereed)
    Abstract [en]

    Slag samples, hot-metal samples and hot-metal temperatures were obtained during tapping of two blast furnaces. Sampling was carried out at different time points during tapping of three separate heats. The size distribution and composition of metal droplets found in the slag were determined using scanning electron microscopy. Only metal droplets above 0.75 mu m could be counted and analysed. All droplets were below 8 mu m in diameter and the great majority of these droplets were found to be between 0.75 and 2 Pm. The size distribution did not differ significantly for different slag samples. Iron was the main droplet component. Electron probe microanalysis showed that the droplets contained small amounts of carbon. The percentage of the area in a studied cross-section that was covered with metal droplets varied between 0.01 and 0.07%. Calculations based on Stoke's law showed that the distance droplets travel in the slag is in the micron range. Slag samples taken in the beginning of slag tapping contained more droplets than those taken in the middle of slag tapping, an indication that most droplets can be found in the area near the furnace wall. Some droplets were determined to have magnesium enrichment at the external surface.

  • 32.
    Hou, Zi Yong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Northeastern University, China.
    Wu, Di
    Zheng, Shu Xin
    Yang, Xiao Long
    Li, Zhuang
    Xu, Yun Bo
    Effect of Holding Temperature on Microstructure and Mechanical Properties of High-Strength Multiphase Steel2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 9, 1203-1212 p.Article in journal (Refereed)
    Abstract [en]

    Isothermal holding following intercritical annealing is usually used in microstructure control, e.g., fractions and stabilities of retained-austenite (RA). Fe-0.22C-2.5Mn-0.47Si-0.41Cr-0.02Nb (mass%) steel is subjected to intercritical annealing and isothermal treatment at 250, 300, 350, and 400 degrees C to elucidate the impact on microstructures and mechanical properties by means of electron microscopy and uniaxial tensile test, respectively. The results show that the isothermal holding temperature is vital for the formed phases, including the morphology, volume fraction, and carbon content of RA in the processed steels. The tensile test results indicate that the mechanical properties including Ultra-tensile strength (UTS), Yield strength (YS), as well as Total Elongation (TEL) are attributed to the synthetic action of all constituents of phase morphology and corresponding fractions, e.g., hard-to-soft phase ratio, morphology and fraction of RA, dispersed precipitates. An excellent combination of strength-ductility of the present multiphase steel has been explained in terms of their specific microstructure.

  • 33.
    Hou, Ziyong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy.
    Wu, D.
    Zheng, S. X.
    Yang, X. L.
    Li, Z.
    Xu, Y. B.
    Effect of Holding Temperature on Microstructure and Mechanical Properties of High-Strength Multiphase Steel2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 9, 1203-1212 p.Article in journal (Refereed)
    Abstract [en]

    Isothermal holding following intercritical annealing is usually used in microstructure control, e.g., fractions and stabilities of retained-austenite (RA). Fe–0.22C–2.5Mn–0.47Si–0.41Cr–0.02Nb (mass%) steel is subjected to intercritical annealing and isothermal treatment at 250, 300, 350, and 400 °C to elucidate the impact on microstructures and mechanical properties by means of electron microscopy and uniaxial tensile test, respectively. The results show that the isothermal holding temperature is vital for the formed phases, including the morphology, volume fraction, and carbon content of RA in the processed steels. The tensile test results indicate that the mechanical properties including Ultra-tensile strength (UTS), Yield strength (YS), as well as Total Elongation (TEL) are attributed to the synthetic action of all constituents of phase morphology and corresponding fractions, e.g., hard-to-soft phase ratio, morphology and fraction of RA, dispersed precipitates. An excellent combination of strength–ductility of the present multiphase steel has been explained in terms of their specific microstructure.

  • 34.
    Janis, Diana
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    A Study of Cluster Characteristics in Liquid Stainless Steel and in a Clogged Nozzle2015In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 86, no 11, 1271-1278 p.Article in journal (Refereed)
    Abstract [en]

    Clusters of Al2O3 inclusions in a liquid stainless steel (18/8) and in a clogged ZrO2 nozzle after casting were studied during a pilot plant trial. Samples were taken from the melt at different holding times after an addition of 0.1 mass% Al. The characteristics (composition, size, number, and morphology) of clusters and clustered inclusions in the steel samples and in the clogged nozzle were investigated after electrolytic extraction and etching by using SEM. It was found that the Al2O3 inclusions in the clusters are transformed from a spherical into irregular and regular (with sharp edges) shape during the holding time. Most of the inclusions in the clusters (>80%) after a 6 min holding time are regular inclusions, which have sharp edges and flat faces. The size of the inclusions in clusters in the melt increased on average from 1.0 μm at a 1 min to 5.2 μm at a 12 min holding time. While the sizes of different types of inclusions in the clogged nozzle correspond to those present in the liquid steel at respective time, the frequency of spherical inclusions in the clogged nozzle is about 2–4 times larger (particularly near the nozzle wall) compared to that in the melt. Growth and transformation of Al2O3 clusters in the liquid steel at different holding times after an addition of Al and during casting were considered based on the obtained results.

  • 35.
    Jelkina Albertsson, Galina
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Engström, Fredrik
    Teng, Lidong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    Effect of the Heat Treatment on the Chromium Partition in Cr-Containing Industrial and Synthetic Slags2014In: Steel Research International, ISSN 1611-3683, Vol. 85, no 10, 1418-1431 p.Article in journal (Refereed)
    Abstract [en]

    In the present work, the effects of the slag composition and heat-treatment conditions on the phase relationships in a number of Cr-containing industrial and synthetic slags were investigated with a view to control the precipitation of Cr-spinel in the slag phase. Gas/slag equilibrium technique was used for the chromium partition and the phase relationship study. The phase relationships in synthetic slags and industrial EAF slags supplied by Swedish steelmaking plants have been investigated experimentally in the temperature range of 1473-1873 K. The slags were re-melted, slow-cooled to, and soaked at targeted temperatures in controlled atmosphere. Two different heat-treatment sequences were used in the present experiments. The oxygen partial pressure (p(O2) = 10(-3) Pa) was maintained by a suitable mixture of CO and CO2 gases. Phases present and their compositions in the quenched slags were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The chromium content in the phases present was analyzed using wavelength-dispersive spectrometer (WDS). Chromium partition was found to depend on the heat-treatment temperature.

  • 36.
    Kazemi, Mania
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Glaser, Bjoern
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Study on Direct Reduction of Hematite Pellets Using a New TG Setup2014In: Steel Research International, ISSN 1611-3683, Vol. 85, no 4, 718-728 p.Article in journal (Refereed)
    Abstract [en]

    A new thermogravimetric setup was developed to study direct reduction of iron oxide under well-controlled experimental conditions. Pure and industrial hematite samples were isothermally reduced by hydrogen and carbon monoxide gaseous mixtures. Influences of gas composition, gas flow rate, and temperature on reduction were investigated. Reduction rates obtained using the new setup were higher compared to conventional thermogravimetric method. This difference was due to the time required to replace the inert gas with the reactant gas in the conventional method, which led to lower reduction rate at the initial stage. Carbon deposited on the surface of the pellets at relatively high gas flow rates and at low temperatures. The presence of pure iron and high carbon potential in the gas phase were the cause for carbon deposition. Study of partially reduced samples illustrated that the outer layer of pellet with high iron content thickened as reduction proceeded inside the pellet. Closure of micro-pores and formation of dense iron phase in this layer decelerated diffusion of reactant and product gases, and led to decrease of reduction rate at later stages of reaction. At lower temperatures, this effect was coupled with carbon deposition. Therefore, the reduction was seriously hindered.

  • 37.
    Kellner, Hans E O
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Memarpour, A.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Evolution of Non-Metallic Inclusions from FeTi70R Alloys during Alloying of Fe-40Ni-20Cr Steels2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArticle in journal (Refereed)
    Abstract [en]

    In this study, the composition, size, and number of large non-metallic inclusions (>20μm) are investigated in a commercial refined FeTi70R alloy, which is used for deoxidation and alloying of different industrial high-quality steels. It is found that this ferroalloy contains different complex oxide inclusions, which sizes vary from 20 to 260μm. These different complex inclusions contain mostly CaO, SiO2, and TiOx. When adding FeTi70R alloy in the steel during the final stage of ladle treatment, these large size inclusions can significantly decrease the cleanliness and mechanical properties of steel. Therefore, the evolution and behavior of these inclusions after addition of this ferroalloy into the liquid iron or Fe-40Ni-20Cr steel are investigated in laboratory experiments. In addition, the results from the laboratory scale experiments are compared to results obtained from industrial heats using Alloy 825. A consideration of the evolution mechanism of large inclusions after an addition of a FeTi70R alloy helps to understand their behavior in the melt. It also helps to estimate their possible harmful effects on the quality of this steel grade during commercial production.

  • 38.
    Kellner, Hans E. O.
    et al.
    KTH, School of Industrial Engineering and Management (ITM). Dalarna University, Sweden.
    Karasev, Andrey
    KTH, School of Industrial Engineering and Management (ITM).
    Sundqvist, Olle
    Memarpour, Arashk
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM).
    Estimation of Non-Metallic Inclusions in Industrial Ni Based Alloys 8252017In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 88, no 4, UNSP 1600024Article in journal (Refereed)
    Abstract [en]

    It is well known that inclusions affect the properties of the steel and other alloys. The importance of understanding the behavior of the inclusions during production can never be overstated. This study has examined the main types of big size (> 10 mu m) inclusions that exist in Ni-based Alloy at the end of ladle treatment and after casting during industrial production of Ni based Alloys 825. Sources, mechanisms of formation and behavior of different type large size inclusions in Alloy 825 are discussed based on 2 and 3D investigations of inclusion characteristics (such as, morphology, composition, size, and number) and thermodynamic considerations. The large size inclusions found can be divided in spherical (Type I and II) inclusions and in clusters (Type III-V). Type I-A inclusions (Al2O3-CaO-MgO) originate from the slag. Type I-B inclusions and Type II inclusions consist of CaO-Al2O3-MgO and Al2O3-TiO2-CaO, respectively. Both types originate from the FeTi70R alloy. Type III clusters (Al2O3-MgO-CaO) are formed during an Al deoxidation of the Ni-based alloy. Type IV clusters (Al2O3-TiO2-CaO) formed from small inclusions, which are precipitated in local zones which contain high Ti and Al levels. These clusters are transformed to Type III clusters over time in the ladle. Finally, Type V clusters are typical TiN clusters.

  • 39.
    Kirabira, John Baptist
    et al.
    Makerere University, Kampala, Uganda .
    Wijk, Gunnar
    Höganäs Bjuf AB.
    Jonsson, Stefan
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Mechanical Metallurgy.
    Byaruhanga, Joseph Kadoma
    Makerere University.
    Fireclay refractories from Ugandan kaolinitic minerals2006In: Steel Research International, ISSN 1611-3683, ISSN 1611-3683, Vol. 77, no 8, 531-536 p.Article in journal (Refereed)
    Abstract [en]

    In the present work, two deposits, one of kaolin and the other of ball clay, located in Uganda were investigated for the possibility of manufacturing fireclay refractories. Kaolin from the Mutaka deposit was used as the main source of alumina while ball clay from Mukono was the main plasticizer and binder material. The formulated green body was consolidated by wet pressing and fired at 1350 degrees C in a tunnel kiln. Characterization of the sintered articles was done by X-ray diffraction, scanning electron microscopy, and chemical composition (ICP-AES). In addition, technological properties related to thermal conductivity, thermal shock, alkali resistance, water absorption, porosity, shrinkage, permanent linear change, linear thermal expansion, refractoriness under load, and cold crushing strength were determined. The properties of the articles manufactured from these naturally occurring raw minerals reveal that they compare favorably with those of parallel types. Thus, the raw materials can be exploited for industrial production.

  • 40.
    Lindell, David
    et al.
    Swerea Kimab AB, Sweden.
    Ekman, T.
    Pettersson, Rachel
    Jernkontoret, Sweden.
    Fast and Efficient Annealing of Stainless Steel Strip Using Oxyfuel Burners2015In: Steel Research International, ISSN 1611-3683, Vol. 86, no 5, 557-566 p.Article in journal (Refereed)
    Abstract [en]

    Pilot plant and annealing experiments have been conducted to study the effect of the higher water content in oxyfuel annealing on oxidation and pickling of cold rolled stainless steel. The experiments were conducted on the austenitic grade AISI 304 in a propane-fired furnace using air and pure oxygen as oxidizers. The experiments were conducted at 1050-1200 degrees C for typically less than 60 s, in order to simulate industrial annealing of thin strip. Supplementary laboratory annealing trials were made to study the evolution of the microstructure during fast heating rates and short hold times. Increasing the water content from 15 to 50 mol% did not alter the oxidation kinetics or the chemistry of the oxide. Since the oxidation is not altered significantly, the pickling performance of the material remains unchanged. The presence of spalled areas increased the pickling efficiency significantly but this was only seen for material annealed at higher temperature compared to industrial practice. Oxyfuel combustion allows higher heat input and therefore faster heating. The 304 grade recrystallizes readily even at moderate cold rolling reductions so the total annealing time can be reduced substantially if the heating rate can be increased. The present work suggests that this can be done without any downstream effects.

  • 41.
    Lindström, David
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Nortier, P.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Functions of Mg and Mg-CaO mixtures in hot metal desulfurization2014In: Steel Research International, ISSN 1611-3683, Vol. 85, no 1, 76-88 p.Article in journal (Refereed)
    Abstract [en]

    The mechanisms of hot metal desulfurization using Mg and Mg-CaO mixtures were studied in a newly designed set-up. It was found that most of the added Mg quickly escaped in 2 s. MgS was not formed by homogeneous nucleation but by its formation on the MgO particles originated from oxide shell of the Mg particles. When tiny CaO particles were added together with Mg, the particles efficiently transformed to CaS. It was found that Mg-gas helped the distribution of the CaO particles in the hot metal and improved the kinetic condition. Most of the CaO particles smaller than 10 μm were completely transformed to CaS whereas CaO particles >10 μm still had CaO in the center after 20 s. The CaO particles as nuclei were also found to help Mg gas in forming MgS. The ratio of CaO and Mg added was found to have strong impact on the kinetic conditions of desulfurization. This ratio would need further study in any reactor of interest, as the kinetic conditions would differ considerably. The optimized ratio is expected to be a function of the size and geometry of the reactor, the position and the depth of the addition, the manner of addition and more. The hot metal desulfurization mechanisms using Mg and Mg-CaO mixtures were studied. Most added Mg quickly escaped in 2 s. MgS was not formed by homogeneous nucleation but by formation on oxide particles. When tiny CaO particles were added together with Mg, Mg-gas helped distribution of CaO particles in hot metal and improved kinetics. Most CaO particles sized <10 μm were completely transformed to CaS whereas CaO particles >10 μm still had CaO in the center after 20 s.

  • 42.
    Lindström, David
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Nortier, Patrice
    Glaser, Björn
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Study on the Possibility of Using ZnO for Hot Metal Desulfurization2013In: Steel Research International, ISSN 1611-3683, Vol. 84, no 5, 419-425 p.Article in journal (Refereed)
    Abstract [en]

    The possibility of using ZnO for desulfurization in hot metal was evaluated. A lab scale experimental setup was designed so that different desulfurizing agents could be added to hot metal for evaluation of their desulfurizing power. The setup had good control of both temperature and the gaseous atmosphere. It also provided stirring of the metal bath with an impeller as well as quenching facility to maintain the metal composition at high temperature. Desulfurization of hot metal using CaO powder showed evidently the applicability of the new setup. On the other hand, additions of ZnO into the hot metal under various experimental conditions showed no effect on desulfurization. The results were in contradiction to the suggestion found in literature. A thorough examination of the thermodynamic data employed by the previous work was carried out. The data used in the literature were found to be subjected to fundamental mistakes. The present experimental results convincingly rule out the possibility of using ZnO as a desulfurization agent.

  • 43.
    Lindström, David
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Micro-Modelling.
    Study on Desulfurization Abilities of Some Commonly Used Desulfurization Agents2015In: Steel Research International, ISSN 1611-3683, Vol. 86, no 1, 73-83 p.Article in journal (Refereed)
    Abstract [en]

    The desulfurization abilities of some commonly used agents, namely fluidized CaO, CaC2, commercial-CaO, Mg, MgO, CaO center dot MgO, and mixtures of commercial-CaO-Mg were studied and compared under the same experimental conditions in a laboratory furnace at 1773 K. The desulfurization mechanisms of CaO center dot MgO, commercial-CaO, and mixtures of commercial-CaO and Mg were also studied. While fluidized CaO showed the best performance, commercial-CaO mixed with 20 mass% Mg achieved the second best desulfurization. Mg-granules performed slightly better than CaC2 and commercial-CaO, but somewhat less satisfactory compared to fluidized CaO and commercial-CaO-Mg mixtures. Since only the CaO portion in CaO center dot MgO functioned to take up sulfur, additional 70% mass had to be added to achieve the same desulfurization level. The poor ability of commercial-CaO in comparison to fluidized CaO powder was due to both its less reactive surface and agglomeration of the particles.

  • 44.
    Lindström, David
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Study on the Possibility of Using ZnO to Increase the Desulfurization Potential of Blast Furnace Slag and Sulfide Capacities2013In: Steel Research International, ISSN 1611-3683, Vol. 84, no 1, 48-55 p.Article in journal (Refereed)
    Abstract [en]

    Zinc oxide has recently been suggested to be a potential material for hot metal desulfurization. The present work was carried out to examine whether ZnO could help the remaining blast furnace (BF) slag to capture sulfur. For this purpose, slags prepared with relatively high ZnO content was equilibrated with either liquid silver or liquid copper under controlled oxygen potential at 1773?K. It was found that most of the ZnO escaped during the experiment, indicating thereby that ZnO could not increase the desulfurization potential of the BF slag in the case of hot metal. The experimental data were used to evaluate the sulfide capacities of the studied slags. In some of the slags equilibrated with silver, the MgO activities were evaluated.

  • 45.
    Martinsson, Johan
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Study on Apparent Viscosity of Foam and Droplet Movement Using a Cold Model2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 6, 712-719 p.Article in journal (Refereed)
    Abstract [en]

    The apparent viscosities of foams generated by passing argon through silicone oil are measured. The foams are found to be non-Newtonian flows having apparent viscosities 4-5 times higher than the dynamic viscosity of the origin fluid. The movements of different particles and droplets and their residence times are studied. The measured average velocities of the particles/droplets are substantially lower than the values estimated based on the dynamic viscosities. For both mechanical and gas stirrings, the flows of the foam are very different from pure liquid. The movement of the bar and stirring gas bubbles only pushes a limited number of bubbles which are very close to them to move. No bulk flow as in pure liquid is generated by the stirring. The apparent viscosities of foams generated by passing argon through silicone oil are measured. The foams are found to be non-Newtonian flows and have apparent viscosities about 4-5 times higher than the dynamic viscosity. The average velocities of the particles/droplets moving in the foam are substantially lower than the values estimated based on the dynamic viscosities of the oils.

  • 46.
    Mu, Wangzhong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär Göran
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Shibata, H.
    Nakajima, Keiji
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Inclusion and Microstructure Characteristics in Steels with TiN Additions2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 3, 339-348 p.Article in journal (Refereed)
    Abstract [en]

    The quantitative analysis of inclusion and microstructure characteristics in the steels with TiN additions has been studied. The typical inclusion was detected to be a TiN+Mn-Al-Si-Ti-O+MnS phase. This identification was based on the measurements of scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS), electron probe microanalysis (EPMA), which equipped wavelength-dispersive X-ray spectroscopy (WDS), and equilibrium calculations by using the commercial software Thermo-Calc. TiN was found to be the effective nucleation site for the formation of intragranular ferrite (IGF). Furthermore, the increased inclusion size led to the increased probability of IGF nucleation. In addition, this probability of IGF nucleation was slightly decreased with the increased sulfur content. This tendency could fit the tendency of the area fraction of IGF in the steels containing different sulfur contents.

  • 47.
    Mu, Wangzhong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Mao, Huahai
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jönsson, Pär Göran
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Nakajima, Keiji
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Effect of Carbon Content on the Potency of the Intragranular Ferrite Formation2016In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344X, Vol. 87, no 3, 311-319 p.Article in journal (Refereed)
    Abstract [en]

    The effect of the carbon content on the potency of the intragranular ferrite (IGF) formation for each inclusion size is investigated in the present work. The TiN inclusion was detected to be the effective nucleation site for the IGF formation in the Fe-0.2 mass% C alloy and the Fe-0.4 mass% C alloy. It is noted that the potency of the IGF formation for each inclusion size is decreased with the increase of carbon content. Moreover, the critical diameters of the TiN, TiO, and VN inclusions in the steels with different carbon contents are calculated based on the classical nucleation theory. The calculated critical diameter is also found to be decreased with the increase of carbon content. This is in agreement with the experiment results. Finally, the decrease of the potency of IGF formation for each inclusion size is due to a larger amount of pearlite formation in the steel containing a higher carbon content, which is detected by differential scanning calorimetry (DSC) measurements.

  • 48. Mu, Wangzhong
    et al.
    Mao, Huahai
    Jönsson, Pär Göran
    Nakajima, Keiji
    Effect of Carbon Content on the Probability of the Intragranular Ferrite Formation2015In: Steel Research International, ISSN 1611-3683Article in journal (Refereed)
    Abstract [en]

    The effect of the carbon content on the probability of the intragranular ferrite (IGF) formation was investigated in the present work. The TiN inclusion was detected to be the effective nucleation site for the IGF formation in the Fe-0.2 mass.% C alloy and the Fe-0.4 mass.% C alloy. It is noted that the probability of the IGF formation for each inclusion size is decreased with the increase of carbon content. Moreover, the critical diameters of the TiN, TiO and VN inclusions in the steels with different carbon contents were calculated based on the classical nucleation theory. The calculated critical diameter was also found to be decreased with the increase of carbon content. This is in agreement with the experiment results. Finally, the decrease of the probability of IGF formation for each inclusion size is due to a larger amount of pearlite formation in the steel contains a higher carbon content, which was detected by differential scanning calorimetry (DSC) measurements.

  • 49.
    Mu, Wangzhong
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Shibata, Hiroyuki
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Nakajima, Keiji
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Combination of in situ microscopy and calorimetry to study austenite decomposition in inclusion engineered steels2015In: Steel Research International, ISSN 1611-3683, E-ISSN 1869-344XArticle in journal (Refereed)
    Abstract [en]

    In situ high-temperature confocal laser scanning microscopy and differential scanning calorimetry studies of ferrite formation in inclusion engineered (Ti2O3 and TiN) steels have been performed. The applied methodology allows distinction between intragranular ferrite, grain boundary ferrite, and pearlite. The effect of the inclusions and cooling rates on the initiation of phase transformation and the final microstructure is discussed. It is concluded that the applied hybrid methodology could provide vital details of solid-state phase transformations within the field of inclusion engineering.

  • 50.
    Muhmood, Luckman
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Materials Process Science.
    A New Insight to Interfacial Phenomena Occurring at Slag-Metal Interfaces2011In: Steel Research International, ISSN 1611-3683, Vol. 82, no 12, 1375-1384 p.Article in journal (Refereed)
    Abstract [en]

    Interfacial dilatational modulus was evaluated for slag-metal systems using oxygen and sulfur as tracers at 1823?K. The high values of the dilatational modulus (510 times that obtained for surfactant adsorption) was directly related to the higher change in apparent interfacial tension prevailing at the slag-metal interface. The variation in the dilatational modulus was attributed to the non-uniform distribution of surface active elements at the interface and also due to the varying surface pressure. Further, experiments were designed to estimate the surface shear viscosity. A relationship was established to find the surface/interfacial shear viscosity from the Newton's law of viscosity. The order of magnitude of the interfacial shear viscosity at the slag-metal interface was estimated from the values obtained earlier for the interfacial velocity. The order of magnitude obtained for slag-metal systems was roughly 10100 times that usually occurring in colloidal systems. The same could be attributed to the high bulk viscosities of the individual phases in slag-metal systems. The order of magnitude of the interfacial velocity was verified from the equation generated earlier by dimension analysis to be similar to those obtained from experiments.

12 1 - 50 of 90
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf