Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Yuanying
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden..
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Destouni, Georgia
    Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden..
    Scenarios of Nutrient-Related Solute Loading and Transport Fate from Different Land Catchments and Coasts into the Baltic Sea2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 7, article id 1407Article in journal (Refereed)
    Abstract [en]

    This study uses controlled numerical experimentation to comparatively simulate and investigate solute transport and concentration responses and patterns in the Baltic Sea for various solute releases from the land through two different coastal cases. These cases are the Swedish Kalmar County coast and the Polish coast of the Vistula River outlet. For equivalent solute releases, the coastal flow conditions and their interactions with main marine currents determine the local coastal solute spreading, while the overall spreading over the Baltic Sea is similar for the two coastal cases, despite their large local differences. For nutrient-proportional solute release scenarios, the highly-populated Vistula catchment yields much greater total, but smaller per-capita nutrient impacts, in the Baltic Sea than the Kalmar County catchment. To be as low as from the Vistula catchment, the per-capita nutrient contribution from Kalmar County would have to be reduced much more than required on average per Swedish inhabitant by the Baltic Sea Action Plan. This highlights an unfairness issue in the per-capita distribution of nutrient load allowance among the Baltic countries, which needs to be considered and handled in further research and international efforts aimed to combat the Baltic Sea eutrophication.

  • 2.
    Chen, Yuanying
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Vigouroux, Guillaume
    Stockholm Univ, Bolin Ctr Climate Res, Dept Phys Geog, S-10691 Stockholm, Sweden..
    Bring, Arvid
    Stockholm Univ, Bolin Ctr Climate Res, Dept Phys Geog, S-10691 Stockholm, Sweden..
    Cvetkovic, Vladimir
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Destouni, Georgia
    Stockholm Univ, Bolin Ctr Climate Res, Dept Phys Geog, S-10691 Stockholm, Sweden..
    Dominant Hydro-Climatic Drivers of Water Temperature, Salinity, and Flow Variability for the Large-Scale System of the Baltic Coastal Wetlands2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 3, article id 552Article in journal (Refereed)
    Abstract [en]

    For the large-scale coastal wetland system of the Baltic Sea, this study develops a methodology for investigating if and to what degree the variability and changes in certain hydro-climatic drivers control key coastal-marine physical conditions. The studied physical conditions include: (a) water temperature, (b) water salinity, and (c) flow structures (magnitudes and directions of flows between marine basins and the associated coastal zones and wetlands). We use numerical simulations of three hydro-climatically distinct cases to investigate the variations in hydro-climatic drivers and the resulting physical conditions (a-c) among the cases. The studied hydro-climatic forcing variables are: net surface heat flux, wind conditions, saltwater influx from the North Sea, and freshwater runoff from land. For these variables, the available observation-based data show that the total runoff from land is significantly and positively correlated with precipitation on the sea itself, and negatively correlated with saltwater influx from the North Sea to the Baltic Sea. Overall, the physical condition (a-c) variability in the Baltic Sea and its coastal zones is found to be pairwise well-explained by simulation case differences as follows: (a) Net heat flux is a main control of sea water temperature. (b) Runoff from land, along with the correlated salt water influx from the North Sea, controls average sea salinity; with the variability of local river discharges shifting some coastal zones to deviate from the average sea condition. (c) Wind variability and change control the Baltic Sea flow structure, primarily in terms of flow magnitude and less so in terms of flow direction. For specific coastal wetland zones, considerable salinity differences from average Baltic Sea conditions (due to variability in local river discharges) are found for the coasts of Finland and Estonia, while the coastal wetland zones of south-eastern Sweden, and of Estonia and Latvia, emerge as particularly sensitive to wind shifts.

  • 3.
    de Strasser, Lucia
    et al.
    KTH.
    Lipponen, Annukka
    Howells, Mark
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
    Stec, Stephen
    Brethaut, Christian
    A Methodology to Assess the Water Energy Food Ecosystems Nexus in Transboundary River Basins2016In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 8, no 2Article in journal (Refereed)
  • 4.
    Ferdous, Md Ruknul
    et al.
    IHE Delft Inst Water Educ, Dept Integrated Water Syst & Governance, NL-2611 AX Delft, Netherlands.;Univ Amsterdam, Fac Social & Behav Sci, NL-1012 WX Amsterdam, Netherlands..
    Wesselink, Anna
    IHE Delft Inst Water Educ, Dept Integrated Water Syst & Governance, NL-2611 AX Delft, Netherlands..
    Brandimarte, Luigia
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Slager, Kymo
    Deltares, NL-2600 MH Delft, Netherlands..
    Zwarteveen, Margreet
    IHE Delft Inst Water Educ, Dept Integrated Water Syst & Governance, NL-2611 AX Delft, Netherlands.;Univ Amsterdam, Fac Social & Behav Sci, NL-1012 WX Amsterdam, Netherlands..
    Di Baldassarre, Giuliano
    IHE Delft Inst Water Educ, Dept Integrated Water Syst & Governance, NL-2611 AX Delft, Netherlands.;Uppsala Univ, Dept Earth Sci, SE-75236 Uppsala, Sweden.;CNDS, Ctr Nat Hazards & Disaster Sci, SE-75236 Uppsala, Sweden..
    The Costs of Living with Floods in the Jamuna Floodplain in Bangladesh2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 6, article id 1238Article in journal (Refereed)
    Abstract [en]

    Bangladeshi people use multiple strategies to live with flooding events and associated riverbank erosion. They relocate, evacuate their homes temporarily, change cropping patterns, and supplement their income from migrating household members. In this way, they can reduce the negative impact of floods on their livelihoods. However, these societal responses also have negative outcomes, such as impoverishment. This research collects quantitative household data and analyzes changes of livelihood conditions over recent decades in a large floodplain area in north-west Bangladesh. It is found that while residents cope with flooding events, they do not achieve successful adaptation. With every flooding, people lose income and assets, which they can only partially recover. As such, they are getting poorer, and therefore less able to make structural adjustments that would allow adaptation in the longer term.

  • 5.
    Hamisi, Rajabu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Agnieszka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Modelling phosphorus sorption kinetics and the longevity of reactive filter materials used for on-sitewastewater treatment2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 4, article id 811Article in journal (Refereed)
    Abstract [en]

    Use of reactive filter media (RFM) is an emerging technology in small-scale wastewater treatment to improve phosphorus (P) removal and filter material longevity for making this technology sustainable. In this study, long-term sorption kinetics and the spatial dynamics of sorbed P distribution were simulated in replaceable P-filter bags filled with 700 L of reactive material and used in real on-site treatment systems. The input data for model calibration were obtained in laboratory trials with Filtralite P®, Polonite® and Top16. The P concentration breakthrough threshold value was set at an effluent/influent (C/C 0 ) ratio of 1 and simulations were performed with P concentrations varying from 1 to 25 mg L -1 . The simulation results showed that influent P concentration was important for the breakthrough and longevity, and that Polonite performed best, followed by Top16 and Filtralite P. A 100-day break in simulated intermittent flow allowed the materials to recover, which for Polonite involved slight retardation of P saturation. The simulated spatial distribution of P accumulated in the filter bags showed large differences between the filter materials. The modelling insights from this study can be applied in design and operation of on-site treatment systems using reactive filter materials.

  • 6.
    Karczmarczyk, Agnieszka
    et al.
    Warsaw University of Life Sciences-SGGW.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering (moved 20130630), Environmental Geochemistry and Ecotechnology.
    Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater2011In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 3, no 1, p. 146-156Article in journal (Refereed)
    Abstract [en]

    A horizontal subsurface flow constructed wetland was investigated after eight years of residential wastewater discharge (150 person equivalents). Twenty core samples distributed over the entire wetland were taken from the soil matrix. The distribution pattern of phosphorus (P) accumulation in the substrate of the wetland was determined using kriging technique and P sorption was related to the content of aluminum (Al), calcium (Ca) and iron (Fe). The correlations found between Al, Ca and Fe content and P accumulation in the bed substrate were weak: R2 = 0.09, R2 = 0.21 and R2 = 0.28, respectively. Great heterogeneity was observed in the distribution of Ca, P and organic matter in the superficial and deeper layers of the bed. Hydraulic problems associated with wastewater discharge and conductivity of the bed substrate were suggested to have negative effects on the wetland performance.

  • 7.
    Lin, Chang
    et al.
    Natl Chung Hsing Univ, Dept Civil Engn, Taichung 40227, Taiwan..
    Wong, Wei-Ying
    Natl Chung Hsing Univ, Dept Civil Engn, Taichung 40227, Taiwan..
    Kao, Ming-Jer
    Natl Chung Hsing Univ, Dept Civil Engn, Taichung 40227, Taiwan..
    Yang, James
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures. Älvkarleby Lab, Vattenfall AB Res & Dev, SE-81426 Älvkarleby, Sweden..
    Raikar, Rajkumar V.
    KLE Dr MS Sheshgiri Coll Engn & Technol, Dept Civil Engn, Angol Main Rd, Belgaum 590008, Karnataka, India..
    Yuan, Juan-Ming
    Providence Univ, Dept Data Sci & Big Data Analyt, Taichung 43301, Taiwan..
    Hydrodynamic Features of an Undular Bore Traveling on a 1:20 Sloping Beach2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 8, article id 1556Article in journal (Refereed)
    Abstract [en]

    The hydrodynamic characteristics, including local and convective accelerations as well as pressure gradient in the horizontal direction, of the external stream of an undular bore propagating on a 1:20 sloping beach are experimentally studied. A bore with the water depth ratio of 1.70 was generated downstream of a suddenly lifted gate. A high-speed particle image velocimetry was employed to measure the velocity fields during the run-up and run-down motions. The time series of free surface elevation and velocity field/profile of the generated bore, comprising a pure bore accompanied by a series of dispersive leading waves, are first demonstrated. Based on the fast Fourier transform (FFT) and inverse FFT (IFFT) techniques, the free surface elevation of leading waves and the counterpart of pure bore are acquired separately at a specified measuring section (SMS), together with the uniform horizontal velocity of the pure bore. The effect of leading-wave-induced velocity shift on the velocity profiles of the generated bore are then evaluated at the SMS. To understand the calculation procedure of accelerations and pressure gradient, three tabulated forms are provided as illustrative examples. Accordingly, the relationships among the partially depth-averaged values of the non-dimensional local acceleration, convective acceleration, total acceleration and pressure gradient of the generated/pure bore acquired at the SMS versus the non-dimensional time are elucidated. The trends in the non-dimensional accelerations and pressure gradient of the external stream of generated bore are compared with those of the pure bore. During the run-up motion from the instant of arrival of the bore front to the moment of the peak level at the SMS, continuous decrease in the onshore uniform horizontal velocity, and successive deceleration of the pure bore in the onshore direction are evidenced, exhibiting the pure bore under the adverse pressure gradient with decreasing magnitude. However, the pure bore once ridden by the leading waves is decelerated/accelerated spatially and accelerated/decelerated temporally in the onshore direction during the rising/descending free surface of each leading wave. This fact highlights the effect of pre-passing/post-passing of the leading wave crest on the velocity distribution of generated bore. It is also found that, although the leading waves have minor contribution on the power spectrum of the free surface elevation as compared with that of the pure bore, the leading waves do play an important role on the magnitudes of both accelerations and pressure gradient. The largest magnitude of the acceleration contributed by the leading waves is around 26 times the counterpart contributed by the pure bore. Further, during the run-down motion right after the moment for the peak level of the bore, a linear increase in the magnitude of the offshore uniform horizontal velocity and a constant local acceleration with increasing time are both identified. The partially depth-averaged value of the non-dimensional pressure gradient is equal to a small negative constant (-0.0115) in the offshore direction, indicating that the bore is subject to a constant favorable pressure gradient.

  • 8.
    Mojarrad, Babak Brian
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Betterle, Andrea
    EAWAG Swiss Fed Inst Aquat Sci & Technol, Dept Water Resources & Drinking Water, CH-8600 Dubendorf, Switzerland.;Univ Padua, Dept ICEA, I-35100 Padua, Italy.;Univ Padua, Int Ctr Hydrol Dino Tonini, I-35100 Padua, Italy..
    Singh, Tanu
    Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B45 0AJ, W Midlands, England..
    Olid, Carolina
    Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, S-98107 Abisko, Sweden..
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    The Effect of Stream Discharge on Hyporheic Exchange2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 7, article id 1436Article in journal (Refereed)
    Abstract [en]

    Streambed morphology, streamflow dynamics, and the heterogeneity of streambed sediments critically controls the interaction between surface water and groundwater. The present study investigated the impact of different flow regimes on hyporheic exchange in a boreal stream in northern Sweden using experimental and numerical approaches. Low-, base-, and high-flow discharges were simulated by regulating the streamflow upstream in the study area, and temperature was used as the natural tracer to monitor the impact of the different flow discharges on hyporheic exchange fluxes in stretches of stream featuring gaining and losing conditions. A numerical model was developed using geomorphological and hydrological properties of the stream and was then used to perform a detailed analysis of the subsurface water flow. Additionally, the impact of heterogeneity in sediment permeability on hyporheic exchange fluxes was investigated. Both the experimental and modelling results show that temporally increasing flow resulted in a larger (deeper) extent of the hyporheic zone as well as longer hyporheic flow residence times. However, the result of the numerical analysis is strongly controlled by heterogeneity in sediment permeability. In particular, for homogeneous sediments, the fragmentation of upwelling length substantially varies with streamflow dynamics due to the contribution of deeper fluxes.

  • 9.
    Song, Xingqiang
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Frostell, Björn
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    The DPSIR Framework and a Pressure-Oriented Water Quality Monitoring Approach to Ecological River Restoration2012In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 4, no 3, p. 670-682Article in journal (Refereed)
    Abstract [en]

    Without monitoring anthropogenic pressures on the water environment, it is difficult to set realistic river restoration targets in relation to water quality. Therefore a more holistic approach is needed to systematically explore the links between socio-economic drivers and observed water quality-related impacts on river ecosystems. Using the DPSIR (Drivers-Pressures-State of the Environment-Impacts-Responses) framework, this study linked ecological river restoration with the socio-economic sector, with the focus on promoting a pressure-oriented water quality monitoring system. Based on the European Water Framework Directive (WFD) and relevant literature, it was found that most water quality-related indicators employed today are state/impacts-oriented, while very few are pressure-oriented. As a response, we call for more attention to a DPR (Drivers-Pressures-Responses) framework in developing an industrial ecology-based pressure-oriented water quality monitoring system for aiding ecological river restoration planning. This approach is characterized in general by accounting for material-related flows throughout the socio-economic sector in relation to river ecosystem degradation. Then the obtained information would help decision makers take appropriate measures to alleviate various significant human-induced wastes and emissions at their sources. We believe that such a pressure-oriented monitoring system will substantially complement traditional state/impacts-oriented environmental and ecological monitoring and help develop more proactive planning and decision-making processes for specific river restoration projects and general water quality management.

  • 10.
    Sridharan, Vignesh
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
    Ramos, Eunice
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
    Zepeda, E.
    United Nations Department of Economic and Social Affairs (UNDESA), Development Policy and Analysis Division, 405 East 42nd Street, New York, NY 10017, United States.
    Boehlert, B.
    Industrial Economics Inc., 2067 Massachusetts Ave, Cambridge, MA 02140, United States.
    Shivakumar, Abhishek
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis. United Nations Department of Economic and Social Affairs (UNDESA), Development Policy and Analysis Division, 405 East 42nd Street, New York, NY 10017, United States.
    Taliotis, C.
    The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia, Nicosia, 2121, Cyprus.
    Howells, Mark I.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems Analysis.
    The impact of climate change on crop production in Uganda-An integrated systems assessment with water and energy implications2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 9, article id 1805Article in journal (Refereed)
    Abstract [en]

    With less than 3% of agricultural cropland under irrigation, subsistence farmers in Uganda are dependent on seasonal precipitation for crop production. The majority of crops grown in the country-especially staple food crops like Matooke (Plantains)-are sensitive to the availability of water throughout their growing period and hence vulnerable to climatic impacts. In response to these challenges, the Government has developed an ambitious irrigation master plan. However, the energy implications of implementing the plan have not been explored in detail. This article attempts to address three main issues involving the nexus between water, energy, crop production, and climate. The first one explores the impact of climate on rain-fed crop production. The second explores the irrigation crop water needs under selected climate scenarios. The third focuses on the energy implications of implementing the irrigation master plan. We attempt to answer the above questions using a water balance model for Uganda developed for this study. Our results, developed at a catchment level, indicate that on average there could be an 11% reduction and 8% increase in rain-fed crop production in the cumulatively driest and wettest climates, respectively. Furthermore, in the identified driest climate, the electricity required for pumping water is expected to increase by 12% on average compared to the base scenario.

  • 11. Xie, Q.
    et al.
    Yang, James
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Lundström, S.
    Dai, W.
    Understanding morphodynamic changes of a tidal river confluence through field measurements and numerical modeling2018In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 10, no 10, article id 1424Article in journal (Refereed)
    Abstract [en]

    A confluence is a natural component in river and channel networks. This study deals, through field and numerical studies, with alluvial behaviors of a confluence affected by both river run-offand strong tides. Field measurements were conducted along the rivers including the confluence. Field data show that the changes in flow velocity and sediment concentration are not always in phase with each other. The concentration shows a general trend of decrease from the river mouth to the confluence. For a given location, the tides affect both the sediment concentration and transport. A two-dimensional hydrodynamic model of suspended load was set up to illustrate the combined effects of run-offand tidal flows. Modeled cases included the flood and ebb tides in a wet season. Typical features examined included tidal flow fields, bed shear stress, and scour evolution in the confluence. The confluence migration pattern of scour is dependent on the interaction between the river currents and tidal flows. The flood tides are attributable to the suspended load deposition in the confluence, while the ebb tides in combination with run-offs lead to erosion. The flood tides play a dominant role in the morphodynamic changes of the confluence.

  • 12.
    Yang, James
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure. Vattenfall AB Res & Dev, Alvkarleby Lab, SE-81426 Alvkarleby, Sweden.
    Andreasson, Patrik
    Vattenfall AB Res & Dev, Alvkarleby Lab, SE-81426 Alvkarleby, Sweden.;Lulea Univ Technol, Div Fluid & Expt Mech, SE-97187 Lulea, Sweden..
    Högström, Carl-Maikel
    Vattenfall AB Res & Dev, Alvkarleby Lab, SE-81426 Alvkarleby, Sweden..
    Teng, Penghua
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    The Tale of an Intake Vortex and Its Mitigation Countermeasure: A Case Study from Akkats Hydropower Station2018In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 10, no 7, article id 881Article in journal (Refereed)
    Abstract [en]

    The upgrade of Akkats power station in Sweden included a new, separate waterway for the addition of a 75 MW generating unit. The vertical intake of its headrace was formed by means of lake tapping. A physical model was used to help understand the blasting process involving fragmented rock, water, air, and gas. Upon commissioning of the unit, swirling flows occurred unexpectedly at the intake, which gave rise to negative consequences including limitations in power output. Echo-sounding showed that the blasted piercing resulted in an irregular intake. A hydraulic model, as part of the design process, was built to examine potential countermeasures for vortex suppression. The final solution was a segmented barrier between the intake and the dam. It effectively suppressed the intake flow circulations; only minor intermittent vortices were left. The fabricated steel segments were anchored into the bedrock, stretching to 1.0 m below the lowest legal reservoir level. The local intake headloss was also reduced. The implemented solution was tested under full turbine loading and the result was satisfactory. Even during winter seasons with ice cover above the wall, the power station ran normally. The case study is expected to provide guidance for solving similar problems with vortex formation.

  • 13.
    Yang, James
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Lin, C.
    Kao, M. -J
    Teng, Penghua
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Raikar, R. V.
    Application of SIM, HSPIV, BTM, and BIV techniques for evaluations of a two-phase air-water chute aerator flow2018In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 10, no 11, article id 1590Article in journal (Refereed)
    Abstract [en]

    Four image-based techniques-i.e., shadowgraphic image method (SIM), high-speed particle image velocimetry (HSPIV), bubble tracking method (BTM), and bubble image velocimetry (BIV)-are employed to investigate an aerator flow on a chute with a 17° inclination angle. The study focuses on their applications to the following issues: (1) to explore the characteristic positions of three water-air interfaces; (2) to interpret the evolution process of air bubbles shed from the wedged tip of the air cavity; (3) to identify the probabilistic means for characteristic positions near the fluctuating free surface; (4) to explore the probability distribution of intermittent appearance of air bubbles in the flow; (5) to obtain the mean streamwise and transverse velocity distributions of the water stream; (6) to acquire velocity fields, both instantaneous and mean, of air bubbles; (7) to construct a two-phase mean velocity field of both water flow and air-bubbles; and (8) to correlate the relationship among the probability distribution of air bubbles, the mean streamwise and transverse velocity profiles of air bubbles, and water stream. The combination of these techniques contributes to a better understanding of two-phase flow characteristics of the chute aerator.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf