Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akhter, Shirin
    et al.
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala Bioctr, Dept Plant Biol, Uppsala, Sweden..
    Kretzschmar, Warren W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nordal, Veronika
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala Bioctr, Dept Plant Biol, Uppsala, Sweden..
    Delhomme, Nicolas
    Swedish Univ Agr Sci, Dept Forest Genet & Plant Physiol, Umea Plant Sci Ctr, Umea, Sweden..
    Street, Nathaniel R.
    Umea Sweden, Dept Plant Physiol, Umea Plant Sci Ctr, Umea, Sweden..
    Nilsson, Ove
    Swedish Univ Agr Sci, Dept Forest Genet & Plant Physiol, Umea Plant Sci Ctr, Umea, Sweden..
    Emanuelsson, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sundström, Jens F.
    Swedish Univ Agr Sci, Linnean Ctr Plant Biol, Uppsala Bioctr, Dept Plant Biol, Uppsala, Sweden..
    Integrative Analysis of Three RNA Sequencing Methods Identifies Mutually Exclusive Exons of MADS-Box Isoforms During Early Bud Development in Picea abies2018In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, article id 1625Article in journal (Refereed)
    Abstract [en]

    Recent efforts to sequence the genomes and transcriptomes of several gymnosperm species have revealed an increased complexity in certain gene families in gymnosperms as compared to angiosperms. One example of this is the gymnosperm sister Glade to angiosperm TM3-like MADS-box genes, which at least in the conifer lineage has expanded in number of genes. We have previously identified a member of this subclade, the conifer gene DEFICIENS AGAMOUS LIKE 19 (DAL19), as being specifically upregulated in cone-setting shoots. Here, we show through Sanger sequencing of mRNA-derived cDNA and mapping to assembled conifer genomic sequences that DAL19 produces six mature mRNA splice variants in Picea abies. These splice variants use alternate first and last exons, while their four central exons constitute a core region present in all six transcripts. Thus, they are likely to be transcript isoforms. Quantitative Real-Time PCR revealed that two mutually exclusive first DAL19 exons are differentially expressed across meristems that will form either male or female cones, or vegetative shoots. Furthermore, mRNA in situ hybridization revealed that two mutually exclusive last DAL19 exons were expressed in a cell-specific pattern within bud meristems. Based on these findings in DAL19, we developed a sensitive approach to transcript isoform assembly from short-read sequencing of mRNA. We applied this method to 42 putative MADS-box core regions in P abies, from which we assembled 1084 putative transcripts. We manually curated these transcripts to arrive at 933 assembled transcript isoforms of 38 putative MADS-box genes. 152 of these isoforms, which we assign to 28 putative MADS-box genes, were differentially expressed across eight female, male, and vegetative buds. We further provide evidence of the expression of 16 out of the 38 putative MADS-box genes by mapping PacBio Iso-Seq circular consensus reads derived from pooled sample sequencing to assembled transcripts. In summary, our analyses reveal the use of mutually exclusive exons of MADS-box gene isoforms during early bud development in P. abies, and we find that the large number of identified MADS-box transcripts in P. abies results not only from expansion of the gene family through gene duplication events but also from the generation of numerous splice variants.

  • 2. Guerriero, Gea
    et al.
    Hausman, Jean-Francois
    Ezcurra, Ines
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    WD4O-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects2015In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 6, article id 1112Article in journal (Refereed)
    Abstract [en]

    The metabolic complexity of living organisms relies on supramolecular protein structures which ensure vital processes, such as signal transduction, transcription, translation and cell wall synthesis. In eukaryotes WD40-repeat (WDR) proteins often function as molecular "hubs" mediating supramolecular interactions. WDR proteins may display a variety of interacting partners and participate in the assembly of complexes involved in distinct cellular functions. In plants, the formation of lignocellulosic biomass involves extensive synthesis of cell wall polysaccharides, a process that requires the assembly of large transmembrane enzyme complexes, intensive vesicle trafficking, interactions with the cytoskeleton, and coordinated gene expression. Because of their function as supramolecular hubs, WDR proteins could participate in each or any of these steps, although to date only few WDR proteins have been linked to the cell wall by experimental evidence. Nevertheless, several potential cell wall-related WDR proteins were recently identified using in silico approaches, such as analyses of co-expression, interactome and conserved gene neighborhood. Notably, some WDR genes are frequently genomic neighbors of genes coding for GT2-family polysaccharide synthases in eukaryotes, and this WDR-GT2 collinear microsynteny is detected in diverse taxa. In angiosperms, two WDR genes are collinear to cellulose synthase genes, CesAs, whereas in ascomycetous fungi several WDR genes are adjacent to chitin synthase genes, chs. In this Perspective we summarize and discuss experimental and in silico studies on the possible involvement of WDR proteins in plant cell wall formation. The prospects of biotechnological engineering for enhanced biomass production are discussed.

  • 3.
    Klemencic, Marina
    et al.
    Umea Univ, Dept Chem, Umea, Sweden. emencic, Marina; Dolinar, Marko.
    Asplund-Samuelsson, Johannes
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dolinar, Marko
    Funk, Christiane
    Phylogenetic distribution and diversity of bacterial pseudo-orthocaspases underline their putative role in photosynthesis2019In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 10, article id 293Article in journal (Refereed)
    Abstract [en]

    Orthocaspases are prokaryotic caspase homologs – proteases, which cleave their substrates after positively charged residues using a conserved histidine – cysteine (HC) dyad situated in a catalytic p20 domain. However, in orthocaspases pseudo-variants have been identified, which instead of the catalytic HC residues contain tyrosine and serine, respectively. The presence and distribution of these presumably proteolytically inactive p20-containing enzymes has until now escaped attention. We have performed a detailed analysis of orthocaspases in all available prokaryotic genomes, focusing on pseudo-orthocaspases. Surprisingly we identified type I metacaspase homologs in filamentous cyanobacteria. While genes encoding pseudo-orthocaspases seem to be absent in Archaea, our results show conservation of these genes in organisms performing either anoxygenic photosynthesis (orders Rhizobiales, Rhodobacterales, and Rhodospirillales in Alphaproteobacteria) or oxygenic photosynthesis (all sequenced cyanobacteria, except Gloeobacter, Prochlorococcus, and Cyanobium). Contrary to earlier reports, we were able to detect pseudo-orthocaspases in all sequenced strains of the unicellular cyanobacteria Synechococcus and Synechocystis. In silico comparisons of the primary as well as tertiary structures of pseudo-p20 domains with their presumably proteolytically active homologs suggest that differences in their amino acid sequences have no influence on the overall structures. Mutations therefore affect most likely only the proteolytic activity. Our data provide an insight into diversification of pseudo-orthocaspases in Prokaryotes, their taxa-specific distribution, and allow suggestions on their taxa-specific function.

  • 4.
    Leijon, Felicia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Melzer, Michael
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Srivastava, Vaibhav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, The University of Adelaide.
    Proteomic Analysis of Plasmodesmata From Populus Cell Suspension Cultures in Relation With Callose Biosynthesis.2018In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, article id 1681Article in journal (Refereed)
    Abstract [en]

    Plasmodesmata are channels that link adjacent cells in plant tissues through which molecular exchanges take place. They are involved in multiple processes vital to plant cells, such as responses to hormonal signaling or environmental challenges including osmotic stress, wounding and pathogen attack. Despite the importance of plasmodesmata, their proteome is not well-defined. Here, we have isolated fractions enriched in plasmodesmata from cell suspension cultures of Populus trichocarpa and identified 201 proteins that are enriched in these fractions, thereby providing further insight on the multiple functions of plasmodesmata. Proteomics analysis revealed an enrichment of proteins specifically involved in responses to stress, transport, metabolism and signal transduction. Consistent with the role of callose deposition and turnover in the closure and aperture of the plasmodesmata and our proteomic analysis, we demonstrate the enrichment of callose synthase activity in the plasmodesmata represented by several gene products. A new form of calcium-independent callose synthase activity was detected, in addition to the typical calcium-dependent enzyme activity, suggesting a role of calcium in the regulation of plasmodesmata through two forms of callose synthase activities. Our report provides the first proteomic investigation of the plasmodesmata from a tree species and the direct biochemical evidence for the occurrence of several forms of active callose synthases in these structures. Data are available via ProteomeXchange with identifier PXD010692.

  • 5.
    Lopez-Goldar, Xose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). CSIC, Mision Biol Galicia, Pontevedra, Spain.;Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA.;INIA, Forest Res Ctr, Dept Forest Ecol & Genet, Madrid, Spain..
    Villari, Caterina
    Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA.;Univ Georgia, Daniel B Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA..
    Bonello, Pierluigi
    Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA..
    Borg-Karlson, Anna-Karin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Grivet, Delphine
    INIA, Forest Res Ctr, Dept Forest Ecol & Genet, Madrid, Spain.;Univ Valladolid, INIA, Sustainable Forest Management Res Inst, Palencia, Spain..
    Zas, Rafael
    CSIC, Mision Biol Galicia, Pontevedra, Spain..
    Sampedro, Luis
    CSIC, Mision Biol Galicia, Pontevedra, Spain..
    Inducibility of Plant Secondary Metabolites in the Stem Predicts Genetic Variation in Resistance Against a Key Insect Herbivore in Maritime Pine2018In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, article id 1651Article in journal (Refereed)
    Abstract [en]

    Resistance to herbivores and pathogens is considered a key plant trait with strong adaptive value in trees, usually involving high concentrations of a diverse array of plant secondary metabolites (PSM). Intraspecific genetic variation and plasticity of PSM are widely known. However, their ecology and evolution are unclear, and even the implication of PSM as traits that provide direct effective resistance against herbivores is currently questioned. We used control and methyl jasmonate (MJ) induced clonal copies of genotypes within families from ten populations of the main distribution range of maritime pine to exhaustively characterize the constitutive and induced profile and concentration of PSM in the stem phloem, and to measure insect herbivory damage as a proxy of resistance. Then, we explored whether genetic variation in resistance to herbivory may be predicted by the constitutive concentration of PSM, and the role of its inducibility to predict the increase in resistance once the plant is induced. We found large and structured genetic variation among populations but not between families within populations in resistance to herbivory. The MJ-induction treatment strongly increased resistance to the weevil in the species, and the genetic variation in the inducibility of resistance was significantly structured among populations, with greater inducibility in the Atlantic populations. Genetic variation in resistance was largely explained by the multivariate concentration and profile of PSM at the genotypic level, rather than by bivariate correlations with individual PSM, after accounting for genetic relatedness among genotypes. While the constitutive concentration of the PSM blend did not show a clear pattern of resistance to herbivory, specific changes in the chemical profile and the increase in concentration of the PSM blend after MJ induction were related to increased resistance. To date, this is the first example of a comprehensive and rigorous approach in which inducibility of PSM in trees and its implication in resistance was analyzed excluding spurious associations due to genetic relatedness, often overlooked in intraspecific studies. Here we provide evidences that multivariate analyses of PSM, rather than bivariate correlations, provide more realistic information about the potentially causal relationships between PSM and resistance to herbivory in pine trees.

  • 6.
    Peng, Yanchun
    et al.
    Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China..
    Liu, Hongbo
    Huazhong Agr Univ, Natl Ctr Plant Gene Res, Natl Key Lab Crop Genet Improvement, Wuhan, Hubei, Peoples R China..
    Chen, Jie
    Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China..
    Shi, Taotao
    Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China..
    Zhang, Chi
    KTH, School of Chemical Science and Engineering (CHE).
    Sun, Dongfa
    Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China..
    He, Zhonghu
    Chinese Acad Agr Sci, Natl Wheat Improvement Ctr, Inst Crop Sci, Beijing, Peoples R China..
    Hao, Yuanfeng
    Chinese Acad Agr Sci, Natl Wheat Improvement Ctr, Inst Crop Sci, Beijing, Peoples R China..
    Chen, Wei
    Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan, Hubei, Peoples R China..
    Genome-Wide Association Studies of Free Amino Acid Levels by Six Multi-Locus Models in Bread Wheat2018In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, article id 1196Article in journal (Refereed)
    Abstract [en]

    Genome-wide association studies (GWAS) have been widely used to dissect the complex biosynthetic processes of plant metabolome. Most studies have used single-locus GWAS approaches, such as mixed linear model (MLM), and little is known about more efficient algorithms to implement multi-locus GWAS. Here, we report a comprehensive GWAS of 20 free amino acid (FAA) levels in kernels of bread wheat (Triticum aestivum L.) based on 14,646 SNPs by six multi-locus models (FASTmrEMMA, FASTmrMLM, ISISEM-BLASSO, mrMLM, pKWmEB, and pLARmEB). Our results showed that 328 significant quantitative trait nucleotides (QTNs) were identified in total (38, 8, 92, 45, 117, and 28, respectively, for the above six models). Among them, 66 were repeatedly detected by more than two models, and 155 QTNs appeared only in one model, indicating the reliability and complementarity of these models. We also found that the number of significant QTNs for different FAAs varied from 8 to 41, which revealed the complexity of the genetic regulation of metabolism, and further demonstrated the necessity of the multi-locus GWAS. Around these significant QTNs, 15 candidate genes were found to be involved in FAA biosynthesis, and one candidate gene (TraesCS1D01G052500, annotated as tryptophan decarboxylase) was functionally identified to influence the content of tryptamine in vitro. Our study demonstrated the power and efficiency of multi-locus GWAS models in crop metabolome research and provided new insights into understanding FAA biosynthesis in wheat.

  • 7. Schrick, Kathrin
    et al.
    DeBolt, Seth
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Deciphering the molecular functions of sterols in cellulose biosynthesis2012In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 3, p. 84-Article in journal (Refereed)
    Abstract [en]

    Sterols play vital roles in plant growth and development, as components of membranes and as precursors to steroid hormones. Analysis of Arabidopsis mutants indicates that sterol composition is crucial for cellulose biosynthesis. Sterols are widespread in the plasma membrane (PM), suggesting a possible link between sterols and the multimeric cellulose synthase complex. In one possible scenario, molecular interactions in sterol-rich PM microdomains or another form of sterol-dependent membrane scaffolding may be critical for maintaining the correct subcellular localization, structural integrity and/or activity of the cellulose synthase machinery. Another possible link may be through steryl glucosides, which could act as primers for the attachment of glucose monomers during the synthesis of beta - (1 -> 4) glucan chains that form the cellulose microfibrils. This mini-review examines genetic and biochemical data supporting the link between sterols and cellulose biosynthesis in cell wall formation and explores potential approaches to elucidate the mechanism of this association.

  • 8.
    Srivastava, Vaibhav
    et al.
    KTH, School of Biotechnology (BIO), Glycoscience.
    Weber, Joseph R.
    Malm, Erik
    Fouke, Bruce W.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Proteomic Analysis of a Poplar Cell Suspension Culture Suggests a Major Role of Protein S-Acylation in Diverse Cellular Processes2016In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 7, article id 477Article in journal (Refereed)
    Abstract [en]

    S-acylation is a reversible post-translational modification of proteins known to be involved in membrane targeting, subcellular trafficking, and the determination of a great variety of functional properties of proteins. The aim of this work was to identify S-acylated proteins in poplar. The use of an acyl-biotin exchange method and mass spectrometry allowed the identification of around 450 S-acylated proteins, which were subdivided into three major groups of proteins involved in transport, signal transduction, and response to stress, respectively. The largest group of S-acylated proteins was the protein kinase superfamily. Soluble N-ethylmaleimide-sensitive factor-activating protein receptors, band 7 family proteins and tetraspanins, all primarily related to intracellular trafficking, were also identified. In addition, cell wall related proteins, including cellulose synthases and other glucan synthases, were found to be S-acylated. Twenty four of the identified S-acylated proteins were also enriched in detergent-resistant membrane microdomains, suggesting S-acylation plays a key role in the localization of proteins to specialized plasma membrane subdomains. This dataset promises to enhance our current understanding of the various functions of S-acylated proteins in plants.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf