Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amin, Yasar
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    RFID antenna humidity sensor co-design for USN applications2013In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 10, no 4, p. 20130003-Article in journal (Refereed)
    Abstract [en]

    We demonstrate for the first time an RFID tag antenna which itself is humidity sensor and also provides calibration functionality. The antenna is comprised of T-matching network and horizontally meandered lines for impedance matching and reliable near-field communication. The novel contour design provides humidity sensing, and calibration functions whilst concurrently acts as a radiating element along with quadrangular capacitive tip-loading with covered middle portion for far-field communication. The inkjet printed prototypes of the antenna provide effective ambient humidity sensing while demonstrating stable RFID communication. The antenna has a compact size of 1.1 x 10.2 cm for 902-928MHz band.

  • 2. Aslam, Bilal
    et al.
    Khan, Umar Hasan
    Habib, Ayesha
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Univ Engn & Technol, Pakistan.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    Frequency signature chipless RFID tag with enhanced data capacity2015In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 12, no 17, article id 20150623Article in journal (Refereed)
    Abstract [en]

    Frequency signature chipless RFID tag based on spurline resonator is presented in this letter. Resonant response of spurline is explained by analyzing the surface current distribution. Chipless tag consists of a data encoding circuit and two cross polarised monopole antennas. The tag has a data capacity of 16 bits in the range 2.13 to 4.1 GHz. Data capacity of data encoding circuit is enhanced by repositioning the spurlines. The prototype of the tag is fabricated on FR4 substrate. Developed tag can be used for cost effective identification of items in the industry.

  • 3.
    Chen, Xiaowen
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. National University of Defense Technology, China .
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Jantsch, Axel
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Shuming
    Guo, Yang
    Liu, Hengzhu
    Cooperative communication for efficient and scalable all-to-all barrier synchronization on mesh-based many-core NoCs2014In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 11, no 18, p. 20140542-Article in journal (Refereed)
    Abstract [en]

    On many-core Network-on-Chips (NoCs), communication is on the critical path of system performance and contended synchronization requests may cause large performance penalty. Different from conventional algorithm-based approaches, the paper addresses the barrier synchronization problem from the angle of optimizing its communication performance and proposes cooperative communication as a means to achieve efficient and scalable all-to-all barrier synchronization on mesh-based many-core NoCs. With the cooperative communication, routers collaborate with one another to accomplish a fast barrier synchronization task. The cooperative communication is implemented in our router at low cost. Through comparative experiments, our approach evidently exhibits high efficiency and good scalability.

  • 4. Habib, A.
    et al.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Engineering and Technology (UET), Pakistan.
    Azam, M. A.
    Loo, J.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    Frequency signatured directly printable humidity sensing tag using organic electronics2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 3Article in journal (Refereed)
    Abstract [en]

    In this paper chipless RFID tag, capable of carrying 9-bit data is presented. The tag is optimized for several flexible substrates. With growing information and communication technology, sensor integration with data transmission has gained significant attention. Therefore, the tag with the same dimension is then optimized using paper substrate. For different values of permittivity, the relative humidity is observed. Hence, besides carrying information bits, the tag is capable of monitoring and sensing the humidity. The overall dimension of the tag comprising of 9 ring slot resonators is 7 mm. Due to its optimization on the paper substrate, the tag can be an ideal choice for deploying in various low-cost sensing applications.

  • 5. Habib, A.
    et al.
    Asif, R.
    Fawwad, M.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Engineering and Technology, Pakistan.
    Loo, J.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    Directly printable compact chipless RFID tag for humidity sensing2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 10Article in journal (Refereed)
    Abstract [en]

    In this letter, 8-bit paper based printable chipless tag is presented. The tag not only justifies the green electronic concept but also it is examined for sensing functionality. The compact tag structure comprises of seven L-shaped and one I-shaped dipole structure. These conducting tracks/dipole structures are of silver nano-particle based ink having a conductivity of 1.1 × 107 S/m. Each conducting track yields one bit corresponding to one peak. The tag design is optimized and analyzed for three different flexible substrates i.e. paper, Kapton® HN, and PET. The tag has ability to identify 28 = 256 objects, by using different binary combinations. The variation in length of particular conducting strip results in a shift of peak for that specific conducting track. This shift corresponds to logic state-1. The response of the tag for paper, Kapton® HN, and PET substrates is observed in the frequency band of 2.2-6.1 GHz, 2.4-6.3 GHz, and 2.5-6.5 GHz, respectively. The tag has an attractive nature because of its easy printability and usage of low-cost, flexible substrates. The tag can be deployed in various low-cost sensing applications.

  • 6. Iqbal, M. S.
    et al.
    Shahid, H.
    Riaz, M. A.
    Rauf, S.
    Amin, Y.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    FSS inspired polarization insensitive chipless RFID tag2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 10Article in journal (Refereed)
    Abstract [en]

    A polarization insensitive, compact, fully-passive bit encoding structure exhibiting 1 : 1 resonator-to-bit correspondence is presented. Inspired by frequency selective surface (FSS) based microwave absorbers, the structure readily operates as a chipless radio frequency identification (RFID) tag. The unit cell is composed of several concentric hexagonal loops. Finite repetitions of the unit cell constitute the proposed RFID tag in its entirety. The required bit sequence is encoded in the frequency domain by addition or omission of corresponding nested resonant elements. A functional prototype is fabricated on a commercial-grade grounded FR4 substrate, occupying a physical footprint of 23 × 10mm2 while offering a capacity of 14 bits. The proposed tag boasts a minuscule profile, and demonstrates polarization insensitivity as well as stable oblique angular performance.

  • 7. Javeda, Nimra
    et al.
    Habib, Ayesha
    Akram, Adeel
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics.
    16-bit frequency signatured directly printable tag for organic electronics2016In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 13, no 11, article id 20160406Article in journal (Refereed)
    Abstract [en]

    A compact 16-bit chipless RFID moisture sensor tag with a size of 13.2 x 19.6mm(2) is designed, fabricated and analyzed. The presented moisture sensor tag is realized on a paper substrate with silver nano particle based ink patches as conducting material. The frequency band of operation is 0.5 to 14 GHz having an overall bandwidth of 13.5 GHz. It is loaded with slots of different lengths and widths, etched on the conductive material. The tag exhibits stable sensing characteristic towards moisture in the real environment. The flexible, sensitive and environmental friendly nature of the proposed tag makes it suitable for wider, low-cost and organic electronics applications.

  • 8. Li, Yang
    et al.
    Chen, Xiaowen
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. College of Computer, National University of Defense Technology, China .
    Zhao, Xiaohui
    Yang, Yong
    Liu, Hengzhu
    Round-trip latency prediction for memory access fairness in mesh-based many-core architectures2014In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 11, no 24, p. 20141027-Article in journal (Refereed)
    Abstract [en]

    In mesh-based many-core architectures, processor cores and memories reside in different locations (center, corner, edge, etc.), therefore memory accesses behave differently due to their different communication distances. The latency difference leads to unfair memory access and some memory accesses with very high latencies, degrading the system performance. However, improving one memory access's latency can worsen the latency of another since memory accesses contend in the network. Therefore, the goal should focus on memory access fairness through balancing the latencies of memory accesses while ensuring a low average latency. In the paper, we address the goal by proposing to predict the round-trip latencies of memory access related packets and use the predicted round-trip latencies to prioritize the packets. The router supporting fair memory access is designed and its hardware cost is given. Experiments are carried out with a variety of network sizes and packet injection rates and prove that our approach outperforms the classic round-robin arbitration in terms of average latency and LSD1. In the experiments, the maximum improvement of the average latency and the LSD are 16% and 48% respectively.

  • 9. Rauf, Shahid
    et al.
    Riaz, Muhammad Ali
    Shahid, Humayun
    Iqbal, Muhammad Sohail
    Amin, Yasar
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Elektronics, Integrated devices and circuits.
    Triangular loop resonator based compact chipless RFID tag2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 4, article id 20161262Article in journal (Refereed)
    Abstract [en]

    A novel, frequency selective surface (FSS) inspired, fully passive, chipless data encoding circuit capable of being operated as a radio frequency identification (RFID) tag is presented. The tag is composed of finite repetitions of the unit cell realized on a grounded FR4 substrate having an overall size of 27.5 x 30mm(2). The unit cell is made up of several triangle-shaped resonators patterned in a looped fashion. Variation in the geometric structure of the tag, achieved by addition or removal of nested loops, corresponds to a specific bit sequence. Each sequence is represented in the spectral domain as a unique frequency signature of the resonators. The proposed 10-bit tag covers the spectral range from 4 to 11 GHz. The tag is compact, robust, and exhibits a stable response to impinging signals at different angles of incidence.

  • 10. Riaz, M. A.
    et al.
    Shahid, H.
    Aslam, S. Z.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Engineering and Technology, Pakistan.
    Akram, A.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    Novel T-shaped resonator based chipless RFID tag2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 18Article in journal (Refereed)
    Abstract [en]

    A novel, frequency selective surface (FSS) based, data encoding structure amenable to be used as a chipless RFID tag is proposed. The data encoding structure is made up of finite repetitions of a unit cell fabricated on commercially available grounded FR4 substrate having physical dimensions of 15 × 15mm2. The unit cell is composed of numerous T-shaped resonant elements arranged as two atypical sets of concentric nested loops. Alteration in geometry of the encoding circuit, attained by inclusion or omission of nested resonators, corresponds to a particular data sequence. Each encoded data sequence is manifested in the frequency domain as a distinct spectral signature. The proposed 10-bit tag is both compact and robust, and remains interrogable in response to illuminating electromagnetic waves at various angles of incidence.

  • 11. Satti, J. A.
    et al.
    Habib, A.
    Zeb, S.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Engineering and Technology (UET), Pakistan.
    Loo, J.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. University of Turku, Finland.
    Highly-dense flexible chipless RFID tag2017In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 14, no 18, article id 20170750Article in journal (Refereed)
    Abstract [en]

    A 27-bit circular shaped, highly-dense, fully printable chipless radio frequency identification (RFID) tag is presented in this letter. High data capacity is provided in a compact size. The total dimension of the tag is 22 × 22mm2. For exciting the tag, the linearly polarized incident plane wave is used. The circular shaped tag structure is analyzed for three different substrates, i.e., Rogers RT/duroid®/5870, Taconic TLX-0 and DuPont™ Kapton® HN. The spectral range for Rogers RT/duroid®/5870 is 3.3-13.5 GHz, 3.4-13.6 GHz for Taconic TLX-0 and 3.7-15.1 GHz for DuPont™ Kapton® HN substrate. Flexibility is achieved by using Kapton® HN substrate. The presented tag is low-cost and flexible; hence it can be easily deployed on wide range of objects.

  • 12.
    Shahid, Humayun
    et al.
    Univ Engn & Technol, Dept Telecommun Engn, ACTSENA, Taxila 47050, Punjab, Pakistan. min, Yasar; Tenhunen, Hannu.
    Riaz, Muhammad Ali
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Akram, Adeel
    Loo, Jonathan
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Novel QR-incorporated chipless RFID tag2019In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 16, no 5, article id 20180843Article in journal (Refereed)
    Abstract [en]

    This work ideates a novel approach for designing a QR-incorporated data encoding structure that functions as a fully-passive, chipless radio frequency identification (RFID) tag. Several concentric square-shaped resonant slots embedded strategically within a QR-patterned region constitute the tag. A functional prototype is realized over an ungrounded Duroid (R) 5880 substrate, and the same is evaluated for its electromagnetic performance. The tag performs encoding of up to 118 data bits distributed across spectral and optical domain in a compact form factor measuring 55 x 55 mm(2). Possible applications of the formulated tag include multi-layer authentication for secure access control in smart cities and connected homes.

  • 13. Wang, Z.
    et al.
    Chen, Xiaowen
    KTH.
    Zhang, J.
    Guo, Y.
    VP-Router: On balancing the traffic load in on-chip networks2018In: IEICE Electronics Express, ISSN 1349-2543, E-ISSN 1349-2543, Vol. 15, no 22, article id 20180883Article in journal (Refereed)
    Abstract [en]

    Along with the scaling up for network-on-chips (NoC), the network traffic grows increasingly, and generally the central region is easily to become the traffic hotspots. The problem of unbalanced traffic can lead to a part of network links becoming the bottleneck of network communication, and thus hurt the network and system performance. In this paper, we propose load-balanced link distribution method, which is intended to allocating physical channels according to the traffic load on each link. To support connecting multiple physical channels between two routers, we propose a novel concept of virtual port, and design a low-cost multi-port router called virtual port router (VP-Router). Compared to the network with traditional routers, the network with VP-Routers can effectively balance the network traffic load on links. The experiments with SPLASH2 benchmarks exhibit that VP-Router performs 6.3% and 9.0% better in energy-delay-product (EDP) for 4 × 4 and 8 × 8 mesh networks respectively. As for system throughput, VP-Router improves by about 3.5% and 5.8% on average respectively.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf