Owing to their extraordinary surface plasmon and semiconductor properties, copper chalcogenide nanocrystals (NCs) have experienced a steeply increased interest for various types of applications since the first discovery of their plasmonic property in 2009. This article critically and comprehensively reviews the decade long research effort devoted to doped plasmonic copper chalcogenide binary NCs with respect to their synthesis methods, their theoretical description and various applications. In particular, we focus on factors that impact their localized surface plasmon resonances (LSPRs) and on methods used for tuning the LSPRs. We emphasize the underlying mechanisms of LSPR generation and the unique roles and advantages of the copper chalcogenide NCs with respect to the commonly attended plasmonic metal nanoparticles. Finally, we review current challenges in the field of copper chalcogenide NCs and give a perspective for further research. We believe that this review provides a timely and concise summary of the field of plasmonic copper chalcogenide NCs for the benefit and inspiration of its rapid and formulated development.
Cancer biomarkers with high selectivity, specificity and reproducibility play essential role in diagnosis, prognosis and prediction of treatment efficacy in cancer patients. However, the current biomarker assays used in clinics could be improved due to low sensitivity and specificity. Nanoparticle-based assays are emerging as an upcoming approach, providing ultra-high sensitivity and specificity in cancer biomarker detection. The current survey presents an overview of strategies used in the development and integration of nanoparticles for cancer biomarker detection, including mass spectrometry, optical and electrical detection methods. Moreover, we discuss the future trends in the field in correlation to new approaches from fundamental and practical standpoints.