Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dabbaghchian, Saeed
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.
    Arnela, Marc
    GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
    Engwall, Olov
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.
    Guasch, Oriol
    GTM Grup de recerca en Tecnologies Mèdia, La Salle, Universitat Ramon Llull, Barcelona, Spain.
    Reconstruction of vocal tract geometries from biomechanical simulations2018In: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947Article in journal (Refereed)
    Abstract [en]

    Medical imaging techniques are usually utilized to acquire the vocal tract geometry in 3D, which may then be used, eg, for acoustic/fluid simulation. As an alternative, such a geometry may also be acquired from a biomechanical simulation, which allows to alter the anatomy and/or articulation to study a variety of configurations. In a biomechanical model, each physical structure is described by its geometry and its properties (such as mass, stiffness, and muscles). In such a model, the vocal tract itself does not have an explicit representation, since it is a cavity rather than a physical structure. Instead, its geometry is defined implicitly by all the structures surrounding the cavity, and such an implicit representation may not be suitable for visualization or for acoustic/fluid simulation. In this work, we propose a method to reconstruct the vocal tract geometry at each time step during the biomechanical simulation. Complexity of the problem, which arises from model alignment artifacts, is addressed by the proposed method. In addition to the main cavity, other small cavities, including the piriform fossa, the sublingual cavity, and the interdental space, can be reconstructed. These cavities may appear or disappear by the position of the larynx, the mandible, and the tongue. To illustrate our method, various static and temporal geometries of the vocal tract are reconstructed and visualized. As a proof of concept, the reconstructed geometries of three cardinal vowels are further used in an acoustic simulation, and the corresponding transfer functions are derived.

  • 2.
    Jansson, Johan
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
    Degirmenci, N. C.
    KTH, School of Computer Science and Communication (CSC).
    Hoffman, Johan
    KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
    Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem2017In: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, Vol. 33, no 9, article id e2851Article in journal (Refereed)
    Abstract [en]

    In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion–type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study.

  • 3.
    Petras, Argyrios
    et al.
    Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain..
    Leoni, Massimiliano
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain..
    Guerra, Jose M.
    Hosp Santa Creu & Sant Pau, Dept Cardiol, Barcelona, Spain..
    Jansson, Johan
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain..
    Gerardo-Giorda, Luca
    Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain..
    A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue2019In: International Journal for Numerical Methods in Biomedical Engineering, ISSN 2040-7939, E-ISSN 2040-7947, article id e3232Article in journal (Refereed)
    Abstract [en]

    Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, which resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, which is a consequence of the tissue temperature rise overestimation. In this paper, we introduce a full 3D computational model that takes into account the tissue elasticity and is able to capture tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf