Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abbott, BP
    et al.
    Axelsson, Magnus
    KTH.
    Larsson, S
    KTH, School of Engineering Sciences (SCI), Physics.
    Li, Liang
    KTH, School of Engineering Sciences (SCI), Physics.
    Zweizig, John G.
    et al.,
    SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914" (2016, ApJL, 826, L13)2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 225, no 1, article id 8Article in journal (Refereed)
  • 2. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Antolini, E.
    Atwood, W. B.
    Axelsson, Magnus
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Belli, F.
    Berenji, B.
    Bisello, D.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bouvier, A.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Busetto, G.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Campana, R.
    Canadas, B.
    Caraveo, P. A.
    Carrigan, S.
    Casandjian, J. M.
    Cavazzuti, E.
    Ceccanti, M.
    Cecchi, C.
    Celik, Oe.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Cillis, A. N.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Corbet, R.
    Davis, D. S.
    DeKlotz, M.
    den Hartog, P. R.
    Dermer, C. D.
    de Angelis, A.
    de Luca, A.
    de Palma, F.
    Digel, S. W.
    Dormody, M.
    do Couto E Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Fabiani, D.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Healey, S. E.
    Hill, A. B.
    Horan, D.
    Hughes, R. E.
    Iafrate, G.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocevski, D.
    Kuss, M.
    Lande, J.
    Landriu, D.
    Latronico, L.
    Lee, S. -H
    Lemoine-Goumard, M.
    Lionetto, A. M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Makeev, A.
    Marangelli, B.
    Marelli, M.
    Massaro, E.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Michelson, P. F.
    Minuti, M.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Mongelli, M.
    Monte, C.
    Monzani, M. E.
    Moretti, Elena
    University and INFN of Trieste.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakajima, H.
    Nakamori, T.
    Naumann-Godo, M.
    Nolan, P. L.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paccagnella, A.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Pinchera, M.
    Piron, F.
    Porter, T. A.
    Poupard, L.
    Raino, S.
    Rando, R.
    Ray, P. S.
    Razzano, M.
    Razzaque, S.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ripken, J.
    Ritz, S.
    Rochester, L. S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Sadrozinski, H. F. -W
    Salvetti, D.
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Schalk, T. L.
    Scolieri, G.
    Sgro, C.
    Shaw, M. S.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Starck, J. -L
    Stephens, T. E.
    Striani, E.
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Tinebra, F.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Watters, K.
    Winer, B. L.
    Wood, K. S.
    Yang, Z.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics.
    Ziegler, M.
    FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG2010In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 188, no 2, p. 405-436Article in journal (Refereed)
    Abstract [en]

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  • 3. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, M.
    Johannesson, G.
    Johnson, A. S.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    Battelino, Milan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Conrad, Jan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Mc Glynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Moretti, Elena
    University and INFN of Trieste.
    FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST2009In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 183, no 1, p. 46-66Article in journal (Refereed)
    Abstract [en]

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the gamma-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than similar to 10 sigma) gamma-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) gamma-ray sources in the early mission data.

  • 4. Abdo, A. A.
    et al.
    Ackermann, M.
    Ajello, M.
    Atwood, W. B.
    Axelsson, Magnus
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Baughman, B. M.
    Bechtol, K.
    Bellazzini, R.
    Berenji, B.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Borgland, A. W.
    Bregeon, J.
    Brez, A.
    Brigida, M.
    Bruel, P.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cognard, I.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Corbet, R.
    Cutini, S.
    den Hartog, P. R.
    Dermer, C. D.
    de Angelis, A.
    de Luca, A.
    de Palma, F.
    Digel, S. W.
    Dormody, M.
    do Couto e Silva, E.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Espinoza, C.
    Farnier, C.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Freire, P. C. C.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giavitto, G.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Glanzman, T.
    Godfrey, G.
    Gotthelf, E. V.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gwon, C.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hughes, R. E.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Johannesson, G.
    Johnson, A. S.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Kanbach, G.
    Kaspi, V. M.
    Katagiri, H.
    Kataoka, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocian, M. L.
    Kramer, M.
    Kuss, M.
    Lande, J.
    Latronico, L.
    Lemoine-Goumard, M.
    Livingstone, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Lyne, A. G.
    Madejski, G. M.
    Makeev, A.
    Manchester, R. N.
    Marelli, M.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Meurer, C.
    Michelson, P. F.
    Mineo, T.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nolan, P. L.
    Norris, J. P.
    Noutsos, A.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Pelassa, V.
    Pepe, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Ransom, S. M.
    Ray, P. S.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rodriguez, A. Y.
    Romani, R. W.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Sanchez, D.
    Sander, A.
    Parkinson, P. M. Saz
    Scargle, J. D.
    Schalk, T. L.
    Sellerholm, A.
    Sgro, C.
    Siskind, E. J.
    Smith, D. A.
    Smith, P. D.
    Spandre, G.
    Spinelli, P.
    Stappers, B. W.
    Starck, J. -L
    Striani, E.
    Strickman, M. S.
    Strong, A. W.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. B.
    Thayer, J. G.
    Theureau, G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Tosti, G.
    Tramacere, A.
    Uchiyama, Y.
    Usher, T. L.
    Van Etten, A.
    Vasileiou, V.
    Venter, C.
    Vilchez, N.
    Vitale, V.
    Waite, A. P.
    Wang, P.
    Wang, N.
    Watters, K.
    Weltevrede, P.
    Winer, B. L.
    Wood, K. S.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    The first fermi large area telescope catalog of gamma-ray pulsars2010In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 187, no 2, p. 460-494Article in journal (Refereed)
    Abstract [en]

    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.

  • 5. Abdo, A. A.
    et al.
    Ajello, M.
    Allafort, A.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Baring, M. G.
    Bastieri, D.
    Belfiore, A.
    Bellazzini, R.
    Bhattacharyya, B.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burgay, M.
    Burnett, T. H.
    Busetto, G.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Camilo, F.
    Caraveo, P. A.
    Casandjian, J. M.
    Cecchi, C.
    Çelik, Ö.
    Charles, E.
    Chaty, S.
    Chaves, R. C. G.
    Chekhtman, A.
    Chen, A. W.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cognard, I.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    De Angelis, A.
    Decesar, M. E.
    De Luca, A.
    Den Hartog, P. R.
    De Palma, F.
    Dermer, C. D.
    Desvignes, G.
    Digel, S. W.
    Di Venere, L.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Espinoza, C. M.
    Falletti, L.
    Favuzzi, C.
    Ferrara, E. C.
    Focke, W. B.
    Franckowiak, A.
    Freire, P. C. C.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Gotthelf, E. V.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hessels, J.
    Hewitt, J.
    Hill, A. B.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Jackson, Miranda S.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Janssen, G. H.
    Jogler, T.
    Jóhannesson, G.
    Johnson, R. P.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Johnston, S.
    Kamae, T.
    Kataoka, J.
    Keith, M.
    Kerr, M.
    Knödlseder, J.
    Kramer, M.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Lyne, A. G.
    Manchester, R. N.
    Marelli, M.
    Massaro, F.
    Mayer, M.
    Mazziotta, M. N.
    McEnery, J. E.
    McLaughlin, M. A.
    Mehault, J.
    Michelson, P. F.
    Mignani, R. P.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Nemmen, R.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Pivato, G.
    Pletsch, H. J.
    Porter, T. A.
    Possenti, A.
    Rainò, S.
    Rando, R.
    Ransom, S. M.
    Ray, P. S.
    Razzano, M.
    Rea, N.
    Reimer, A.
    Reimer, O.
    Renault, N.
    Reposeur, T.
    Ritz, S.
    Romani, R. W.
    Roth, M.
    Rousseau, R.
    Roy, J.
    Ruan, J.
    Sartori, A.
    Saz Parkinson, P. M.
    Scargle, J. D.
    Schulz, A.
    Sgrò, C.
    Shannon, R.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Stappers, B. W.
    Strong, A. W.
    Suson, D. J.
    Takahashi, H.
    Thayer, J. G.
    Thayer, J. B.
    Theureau, G.
    Thompson, D. J.
    Thorsett, S. E.
    Tibaldo, L.
    Tibolla, O.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Usher, T. L.
    Vandenbroucke, J.
    Vasileiou, V.
    Venter, C.
    Vianello, G.
    Vitale, V.
    Wang, N.
    Weltevrede, P.
    Winer, B. L.
    Wolff, M. T.
    Wood, D. L.
    Wood, K. S.
    Wood, M.
    Yang, Z.
    The second Fermi large area telescope catalog of gamma-ray pulsars2013In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 208, no 2, p. 17-Article in journal (Refereed)
    Abstract [en]

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emission for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.

  • 6. Abdo, A. A.
    et al.
    Jackson, Miranda
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    McGlynn, Sinéad
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ylinen, Tomi
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ziegler, M.
    et al.,
    THE FIRST FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS (vol 187, pg 460, 2010)2011In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 193, no 1Article in journal (Refereed)
  • 7. Acero, F.
    et al.
    Ackermann, M.
    Ajello, M.
    Albert, A.
    Atwood, W. B.
    Axelsson, M.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Belfiore, A.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bogart, J. R.
    Bonino, R.
    Bottacini, E.
    Bregeon, J.
    Britto, R. J.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    DeKlotz, M.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Venere, L.
    Drell, P. S.
    Dubois, R.
    Dumora, D.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Finke, J.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Hadasch, D.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Hill, A. B.
    Horan, D.
    Iafrate, G.
    Jogler, T.
    Johannesson, G.
    Johnson, R. P.
    Johnson, A. S.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Kataoka, J.
    Katsuta, J.
    Kuss, M.
    La Mura, G.
    Landriu, D.
    Larsson, S.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Li, L
    KTH, School of Engineering Sciences (SCI), Physics. The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, Sweden.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Massaro, F.
    Mayer, M.
    Mazziotta, M. N.
    McEnery, J. E.
    Michelson, P. F.
    Mirabal, N.
    Mizuno, T.
    Moiseev, A. A.
    Mongelli, M.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Racusin, J. L.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Rochester, L. S.
    Romani, R. W.
    Salvetti, D.
    Sanchez-Conde, M.
    Parkinson, P. M. Saz
    Schulz, A.
    Siskind, E. J.
    Smith, D. A.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stephens, T. E.
    Strong, A. W.
    Suson, D. J.
    Takahashi, H.
    Takahashi, T.
    Tanaka, Y.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Torres, D. F.
    Torresi, E.
    Tosti, G.
    Troja, E.
    Van Klaveren, B.
    Vianello, G.
    Winer, B. L.
    Wood, K. S.
    Wood, M.
    Zimmer, S.
    FERMI LARGE AREA TELESCOPE THIRD SOURCE CATALOG2015In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 218, no 2, article id 23Article in journal (Refereed)
    Abstract [en]

    We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse.-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4 sigma significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is similar to 3% at 1 GeV.

  • 8. Acero, F.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zimmer, S.
    et al.,
    DEVELOPMENT of the MODEL of GALACTIC INTERSTELLAR EMISSION for STANDARD POINT-SOURCE ANALYSIS of FERMI LARGE AREA TELESCOPE DATA2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 223, no 2, article id 26Article in journal (Refereed)
    Abstract [en]

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20°and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4°of the Galactic Center.

  • 9. Acero, F.
    et al.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Sweden.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Sweden.
    Zimmer, S.
    et al.,
    The first fermi lat supernova remnant catalog2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 224, no 1, article id 8Article in journal (Refereed)
    Abstract [en]

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  • 10. Ackermann, M.
    et al.
    Ajello, M.
    Albert, A.
    Allafort, A.
    Atwood, W. B.
    Axelsson, Magnus
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bogart, J. R.
    Bonamente, E.
    Borgland, A. W.
    Bottacini, E.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Cecchi, C.
    Çelik, Ö.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Conrad, J.
    Corbet, R.
    Cutini, S.
    D'Ammando, F.
    Davis, D. S.
    De Angelis, A.
    Deklotz, M.
    De Palma, F.
    Dermer, C. D.
    Digel, S. W.
    Do Couto E Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Giebels, B.
    Giglietto, N.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grove, J. E.
    Guiriec, S.
    Hadasch, D.
    Hayashida, M.
    Hays, E.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Jackson, Miranda S.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jogler, T.
    Jóhannesson, G.
    Johnson, R. P.
    Johnson, T. J.
    Johnson, W. N.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Kerr, M.
    Knödlseder, J.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lavalley, C.
    Lemoine-Goumard, M.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Naumann-Godo, M.
    Nemmen, R.
    Nishino, S.
    Norris, J. P.
    Nuss, E.
    Ohno, M.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Panetta, J. H.
    Perkins, J. S.
    Pesce-Rollins, M.
    Pierbattista, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Racusin, J. L.
    Rainò, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Reyes, L. C.
    Ritz, S.
    Rochester, L. S.
    Romoli, C.
    Roth, M.
    Sadrozinski, H. F. -W
    Sanchez, D. A.
    Saz Parkinson, P. M.
    Sbarra, C.
    Scargle, J. D.
    Sgrò, C.
    Siegal-Gaskins, J.
    Siskind, E. J.
    Spandre, G.
    Spinelli, P.
    Stephens, T. E.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tinivella, M.
    Tosti, G.
    Troja, E.
    Usher, T. L.
    Vandenbroucke, J.
    Van Klaveren, B.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Winer, B. L.
    Wood, D. L.
    Wood, K. S.
    Wood, M.
    Yang, Z.
    Zimmer, S.
    The fermi large area telescope on orbit: Event classification, instrument response functions, and calibration2012In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 203, no 1, p. 4-Article in journal (Refereed)
    Abstract [en]

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20MeV to more than 300GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  • 11. Ackermann, M.
    et al.
    Ajello, M.
    Asano, K.
    Axelsson, Magnus
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Bellazzini, R.
    Bhat, P. N.
    Bissaldi, E.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burgess, J. Michael
    Buson, S.
    Byrne, D.
    Caliandro, G. A.
    Cameron, R. A.
    Caraveo, P. A.
    Cecchi, C.
    Charles, E.
    Chaves, R. C. G.
    Chekhtman, A.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Connaughton, V.
    Conrad, J.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Dermer, C. D.
    Desiante, R.
    Digel, S. W.
    Dingus, B. L.
    Di Venere, L.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Favuzzi, C.
    Ferrara, E. C.
    Fitzpatrick, G.
    Foley, S.
    Franckowiak, A.
    Fukazawa, Y.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Goldstein, A.
    Granot, J.
    Grenier, I. A.
    Grove, J. E.
    Gruber, D.
    Guiriec, S.
    Hadasch, D.
    Hanabata, Y.
    Hayashida, M.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Inoue, Y.
    Jackson, Miranda S.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Johnson, W. N.
    Kamae, T.
    Kataoka, J.
    Kawano, T.
    Kippen, R. M.
    Knoedlseder, J.
    Kocevski, D.
    Kouveliotou, C.
    Kuss, M.
    Lande, J.
    Larsson, S.
    Latronico, L.
    Lee, S. -H
    Longo, F.
    Loparco, F.
    Lovellette, M. N.
    Lubrano, P.
    Massaro, F.
    Mayer, M.
    Mazziotta, M. N.
    McBreen, S.
    McEnery, J. E.
    McGlynn, S.
    Michelson, P. F.
    Mizuno, T.
    Moiseev, A. A.
    Monte, C.
    Monzani, M. E.
    Moretti, Elena
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Morselli, A.
    Murgia, S.
    Nemmen, R.
    Nuss, E.
    Nymark, Tanja
    KTH, School of Engineering Sciences (SCI), Physics.
    Ohno, M.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Paciesas, W. S.
    Paneque, D.
    Panetta, J. H.
    Pelassa, V.
    Perkins, J. S.
    Pesce-Rollins, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Preece, R.
    Racusin, J. L.
    Raino, S.
    Rando, R.
    Rau, A.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Romoli, C.
    Roth, M.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Parkinson, P. M. Saz
    Schalk, T. L.
    Sgro, C.
    Siskind, E. J.
    Sonbas, E.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takeuchi, Y.
    Tanaka, Y.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tierney, D.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Tronconi, V.
    Usher, T. L.
    Vandenbroucke, J.
    van der Horst, A. J.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    von Kienlin, A.
    Winer, B. L.
    Wood, K. S.
    Wood, M.
    Xiong, S.
    Yang, Z.
    The first Fermi-Lat gamma-ray burst catalog2013In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 209, no 1, p. 11-Article in journal (Refereed)
    Abstract [en]

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (greater than or similar to 20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above similar to 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  • 12. Ackermann, M.
    et al.
    Ajello, M.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Gonzalez, J. Becerra
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bottacini, E.
    Brandt, T. J.
    Bregeon, J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Angelis, A.
    de Palma, F.
    Desiante, R.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Drell, P. S.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Furniss, A. K.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Hill, A. B.
    Horan, D.
    Iafrate, G.
    Hartmann, Dieter
    Jogler, T.
    Johannesson, G.
    Johnson, A. S.
    Kamae, T.
    Kataoka, J.
    Knoedlseder, J.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Li, L.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre for Cosmoparticle Physics, Sweden.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Maldera, S.
    Manfreda, A.
    Mayer, M.
    Mazziotta, M. N.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Ormes, J. F.
    Paneque, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Petrosian, V.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Romani, R. W.
    Sanchez-Conde, M.
    Parkinson, P. M. Saz
    Schmid, J.
    Schulz, A.
    Sgro, C.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, M.
    Takahashi, T.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Vianello, G.
    Wood, K. S.
    Wood, M.
    Yassine, M.
    Zaharijas, G.
    Zimmer, S.
    2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 222, no 1, article id 5Article in journal (Refereed)
    Abstract [en]

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass. 8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT. has detected 360 sources, which constitute the second catalog of hard Fermi-LAT. sources (2FHL). The improved angular resolution enables the precise localization of point sources (similar to 1.' 7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT. on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.

  • 13.
    Ackermann, M.
    et al.
    DESY, D-15738 Zeuthen, Germany..
    Ajello, M.
    Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA..
    Baldini, L.
    Univ Pisa, Sez Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Ballet, J.
    Univ Paris Diderot, CEA Saclay, Serv Astrophys, CNRS,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France..
    Barbiellini, G.
    Ist Nazl Fis Nucl, Seze Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Bastieri, D.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Bellazzini, R.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Bissaldi, E.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Blandford, R. D.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bloom, E. D.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Bonino, R.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.;Univ Turin, Dipartimento Fis, I-10125 Turin, Italy..
    Bottacini, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Univ Padua, Dept Phys & Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy..
    Brandt, T. J.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Bregeon, J.
    Univ Montpellier, CNRS IN2P3, Lab Univ & Particules Montpellier, F-34095 Montpellier, France..
    Bruel, P.
    Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Buehler, R.
    DESY, D-15738 Zeuthen, Germany..
    Cameron, R. A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Caputo, R.
    CRESST, Greenbelt, MD 20771 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Caraveo, P. A.
    INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy..
    Castro, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA..
    Cavazzuti, E.
    Italian Space Agcy, Via Politecn Snc, I-00133 Rome, Italy..
    Charles, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Cheung, C. C.
    Naval Res Lab, Div Space Sci, Washington, DC 20375 USA..
    Chiaro, G.
    INAF Ist Astrofis Spaziale & Fis Cosm Milano, Via E Bassini 15, I-20133 Milan, Italy..
    Ciprini, S.
    Space Sci Data Ctr Agenzia Spaziale Italiana, Via Politecn Snc, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Cohen-Tanugi, J.
    Univ Montpellier, CNRS IN2P3, Lab Univ & Particules Montpellier, F-34095 Montpellier, France..
    Costantin, D.
    Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Cutini, S.
    Space Sci Data Ctr Agenzia Spaziale Italiana, Via Politecn Snc, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    D'Ammando, F.
    INAF Ist Radioastron, I-40129 Bologna, Italy.;Univ Bologna, Dipartimento Astron, I-40127 Bologna, Italy..
    de Palma, F.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy.;Univ Telemat Pegaso, Piazza Trieste & Trento 48, I-80132 Naples, Italy..
    Desai, A.
    Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA..
    Di Lalla, N.
    Univ Pisa, Sez Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Di Mauro, M.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Di Venere, L.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Favuzzi, C.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Finke, J.
    Naval Res Lab, Div Space Sci, Washington, DC 20375 USA..
    Franckowiak, A.
    DESY, D-15738 Zeuthen, Germany..
    Fukazawa, Y.
    Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan..
    Funk, S.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Fusco, P.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Gargano, F.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Gasparrini, D.
    Space Sci Data Ctr Agenzia Spaziale Italiana, Via Politecn Snc, I-00133 Rome, Italy.;Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Giglietto, N.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Giordano, F.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Giroletti, M.
    INAF Ist Radioastron, I-40129 Bologna, Italy..
    Green, D.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Grenier, I. A.
    Univ Paris Diderot, CEA Saclay, Serv Astrophys, CNRS,Lab AIM,CEA IRFU, F-91191 Gif Sur Yvette, France..
    Guillemot, L.
    Univ Orleans, CNRS, Lab Phys & Chim Environnem & Espace, F-45071 Orleans 02, France.;CNRS INSU, Observ Paris, Stn Radioastron Nancay, F-18330 Nancay, France..
    Guiriec, S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;George Washington Univ, Dept Phys, 725 21st St, Washington, DC 20052 USA..
    Hays, E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Hewitt, J. W.
    Univ North Florida, Dept Phys, 1 UNF Dr, Jacksonville, FL 32224 USA..
    Horan, D.
    Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Johannesson, G.
    KTH. Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland.
    Kensei, S.
    Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan..
    Kuss, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Larsson, S.
    KTH, School of Engineering Sciences (SCI), Physics.
    Latronico, L.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy..
    Lemoine-Goumard, M.
    Univ Bordeaux 1, IN2P3 CNRS, Ctr Etudes Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France..
    Li, J.
    Inst Space Sci CSICIEEC, Campus UAB,Carrer Magrans S-N, E-08193 Barcelona, Spain..
    Longo, F.
    Ist Nazl Fis Nucl, Seze Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Loparco, F.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Lovellette, M. N.
    Naval Res Lab, Div Space Sci, Washington, DC 20375 USA..
    Lubrano, P.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy..
    Magill, J. D.
    Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Maldera, S.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy..
    Manfreda, A.
    Univ Pisa, Sez Pisa, I-56127 Pisa, Italy.;Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Mazziotta, M. N.
    Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    McEnery, J. E.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.;Univ Maryland, Dept Astron, College Pk, MD 20742 USA..
    Meyer, M.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Mizuno, T.
    Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan..
    Monzani, M. E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Morselli, A.
    Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy..
    Moskalenko, I. V.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Negro, M.
    Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy.;Univ Turin, Dipartimento Fis, I-10125 Turin, Italy..
    Nuss, E.
    Univ Montpellier, CNRS IN2P3, Lab Univ & Particules Montpellier, F-34095 Montpellier, France..
    Omodei, N.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Orienti, M.
    INAF Ist Radioastron, I-40129 Bologna, Italy..
    Orlando, E.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Ormes, J. F.
    Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA..
    Palatiello, M.
    Ist Nazl Fis Nucl, Seze Trieste, I-34127 Trieste, Italy.;Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy..
    Paliya, V. S.
    Clemson Univ, Kinard Lab Phys, Dept Phys & Astron, Clemson, SC 29634 USA..
    Paneque, D.
    Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany..
    Perkins, J. S.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Persic, M.
    Ist Nazl Fis Nucl, Seze Trieste, I-34127 Trieste, Italy.;Ist Nazl Astrofis, Osservatorio Astronom Trieste, I-34143 Trieste, Italy..
    Pesce-Rollins, M.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Piron, F.
    Univ Montpellier, CNRS IN2P3, Lab Univ & Particules Montpellier, F-34095 Montpellier, France..
    Porter, T. A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Principe, G.
    Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, Erwin Rommel Str 1, D-91058 Erlangen, Germany..
    Raino, S.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Rando, R.
    Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy.;Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy..
    Rani, B.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Razzaque, S.
    Univ Johannesburg, Dept Phys, POB 524,Auckland Pk, ZA-2006 Auckland Pk, South Africa..
    Reimer, A.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Reimer, O.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria.;Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria..
    Reposeur, T.
    Univ Bordeaux 1, IN2P3 CNRS, Ctr Etudes Nucl Bordeaux Gradignan, BP120, F-33175 Gradignan, France..
    Sgro, C.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Siskind, E. J.
    NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA..
    Spandre, G.
    Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy..
    Spinelli, P.
    Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy.;Politecn Bari, I-70126 Bari, Italy.;Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy..
    Suson, D. J.
    Purdue Univ Northwest, Hammond, IN 46323 USA..
    Tajima, H.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA.;Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan..
    Thayer, J. B.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Tibaldo, L.
    CNRS, IRAP, F-310284 Toulouse 4, France.;Univ Toulouse, GAHEC, UPS OMP, IRAP, F-31400 Toulouse, France..
    Torres, D. F.
    Inst Space Sci CSICIEEC, Campus UAB,Carrer Magrans S-N, E-08193 Barcelona, Spain.;ICREA, E-08010 Barcelona, Spain..
    Tosti, G.
    Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy.;Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy..
    Valverde, J.
    Ecole Polytech, IN2P3, CNRS, Lab Leprince Ringuet, F-91128 Palaiseau, France..
    Venters, T. M.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Vogel, M.
    Calif State Univ Los Angeles, Dept Phys & Astron, Los Angeles, CA 90032 USA..
    Wood, K.
    Praxis Inc, Alexandria, VA 22303 USA.;Naval Res Lab, Washington, DC 20375 USA..
    Wood, M.
    Stanford Univ, WW Hansen Expt Phys Lab, Kavli Inst Particle Astrophys & Cosmol, Dept Phys, Stanford, CA 94305 USA.;Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA..
    Zaharijas, G.
    Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy.;Univ Trieste, I-34127 Trieste, Italy.;Univ Nova Gorica, Ctr Astrophys & Cosmol, Nova Gorica, Slovenia..
    Biteau, J.
    Univ Paris 11, Univ Paris Saclay, Inst Phys Nucl, 15 Rue Georges Clemenceau, F-91406 Orsay, France..
    The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 237, no 2, article id 32Article in journal (Refereed)
    Abstract [en]

    We present a search for spatial extension in high-latitude (vertical bar b vertical bar > 5 degrees) sources in recent Fermi point source catalogs. The result is the Fermi High-Latitude Extended Sources Catalog, which provides source extensions (or upper limits thereof) and likelihood profiles for a suite of tested source morphologies. We find 24. extended sources, 19 of which were not previously characterized as extended. These include sources that are potentially associated with supernova remnants and star-forming regions. We also found extended.-ray emission in the vicinity of the Cen. A radio lobes and-at GeV energies for the first time-spatially coincident with the radio emission of the SNR CTA 1, as well as from the Crab Nebula. We also searched for halos around active galactic nuclei, which are predicted from electromagnetic cascades induced by the e(+)e(-) pairs that are deflected in intergalactic magnetic fields. These pairs are produced when gamma-rays interact with background radiation fields. We do not find evidence for extension in individual sources or in stacked source samples. This enables us to place limits on the flux of the extended source components, which are then used to constrain the intergalactic magnetic field to be stronger than 3 x 10(-16) G for a coherence length lambda greater than or similar to 10 kpc, even when conservative assumptions on the source duty cycle are made. This improves previous limits by several orders of magnitude.

  • 14. Ajello, M.
    et al.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bregeon, J.
    Britto, R. J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Costantin, D.
    Costanza, F.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Drell, P. S.
    Dumora, D.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fortin, P.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Gudlaugur
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Kensei, S.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Parkinson, P. M. Saz
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Suson, D. J.
    Takahashi, M.
    Tak, D.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Torresi, E.
    Troja, E.
    Vianello, G.
    Wood, K.
    Wood, M.
    3FHL: The Third Catalog of Hard Fermi-LAT Sources2017In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 232, no 2, article id 18Article in journal (Refereed)
  • 15. Bhat, P. Narayana
    et al.
    Meegan, Charles A.
    von Kienlin, Andreas
    Paciesas, William S.
    Briggs, Michael S.
    Burgess, J. Michael
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Burns, Eric
    Chaplin, Vandiver
    Cleveland, William H.
    Collazzi, Andrew C.
    Connaughton, Valerie
    Diekmann, Anne M.
    Fitzpatrick, Gerard
    Gibby, Melissa H.
    Giles, Misty M.
    Goldstein, Adam M.
    Greiner, Jochen
    Jenke, Peter A.
    Kippen, R. Marc
    Kouveliotou, Chryssa
    Mailyan, Bagrat
    McBreen, Sheila
    Pelassa, Veronique
    Preece, Robert D.
    Roberts, Oliver J.
    Sparke, Linda S.
    Stanbro, Matthew
    Veres, Peter
    Wilson-Hodge, Colleen A.
    Xiong, Shaolin
    Younes, George
    Yu, Hoi-Fung
    Zhang, Binbin
    THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 223, no 2, article id 28Article in journal (Refereed)
    Abstract [en]

    Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two.-ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [NaI[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  • 16.
    Chen, Tao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology. Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands.
    The Carrier of 3.3 mu m Aromatic Infrared Bands: Anharmonicity and Temperature Effects on Neutral PAHs2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 238, no 2, article id 18Article in journal (Refereed)
    Abstract [en]

    Anharmonic infrared (IR) spectra are crucial for the study of interstellar polycyclic aromatic hydrocarbon (PAH) molecules. This work aims to provide a comprehensive study of the features that may influence the accuracy of anharmonic IR spectra of PAHs so that a reliable spectrum that incorporates all necessary features for interpreting the observational IR spectra can be obtained. Six PAHs are investigated: naphthalene, anthracene, pyrene, chrysene, 9,10-dimethylanthracene, and 9,10-dihydroanthracene. The NIST spectra and high-resolution IR absorption spectra are utilized as the reference for the comparisons. The influences of different resonances and resonant thresholds are studied. Four methods for electronic structure calculations are tested. The quantitative comparisons indicate that for the NIST data, B3LYP/NO7D provides the best agreement with measured spectra concerning band positions and B3LYP/cc-pVTZ is superior in the description of the relative intensities. The importance of 1-3 Darling-Dennison resonances, which are required for generating triple combination bands, is investigated through a comparison to a high-resolution experimental spectrum. For interpreting the bandwidths and profiles of the observational spectra, the temperature effects are included through the Wand-Landau random walk technique. The comparisons between calculated high-temperature anharmonic and observational spectra indicate that small and compact PAHs might be responsible for the 3.3 mu m aromatic infrared bands.

  • 17. Connaughton, V
    et al.
    Briggs, M S
    Goldstein, A
    Meegan, C A
    Paciesas, W S
    Preece, R D
    Wilson-Hodge, C A
    Gibby, M H
    Greiner, J
    Gruber, D
    Jenke, P
    Kippen, R M
    Pelassa, V
    Xiong, S
    Yu, H F
    Bhat, P N
    Burgess, J. Michael
    CSPAR and Physics Department, University of Alabama in Huntsville, USA.
    Byrne, D
    Fitzpatrick, G
    Foley, S
    Giles, M M
    Guiriec, S
    van der Horst, A J
    Von Kienlin, A
    McBreen, S
    McGlynn, S
    Tierney, D
    Zhang, B B
    Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor2015In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 216, no 2, article id 32Article in journal (Refereed)
    Abstract [en]

    The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 gamma-ray bursts (GRBs) since it began science operations in 2008 July. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network, to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1°, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.°7 Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14°. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y axis better localized than those on the X axis.

  • 18. Goldstein, A
    et al.
    Preece, R D
    Mallozzi, R S
    Briggs, M S
    Fishman, G J
    Kouveliotou, C
    Pacieses, W S
    Burgess, J Michael
    University of Alabama in Huntsville, United States.
    The BATSE 5B Gamma-Ray Burst Spectral Catalog2013In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 208, no 2Article in journal (Refereed)
    Abstract [en]

    We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).

  • 19. Goldstein, Adam
    et al.
    Burgess, J. Michael
    University of Alabama in Huntsville, United States .
    Preece, R D
    Preece, Robert D
    Briggs, Michael S
    Guiriec, Sylvain
    van der Horst, Alexander J
    Connaughton, Valerie
    Wilson-Hodge, Colleen A
    Paciesas, William S
    Meegan, Charles A
    von Kienlin, Andreas
    Bhat, P N
    Bissaldi, Elisabetta
    Chaplin, Vandiver
    Diehl, Roland
    Fishman, Gerald J
    Fitzpatrick, Gerard
    Foley, Suzanne
    Gibby, Melissa
    Giles, Misty
    Greiner, Jochen
    Gruber, David
    Kippen, R Marc
    Kouveliotou, Chryssa
    McBreen, Sheila
    McGlynn, Sinéad
    Rau, Arne
    Tierney, Dave
    The Fermi GBM Gamma-Ray Burst Spectral Catalog: The First Two Years2012In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 199, no 1, article id 19Article in journal (Refereed)
    Abstract [en]

    We present systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first two years of operation. This catalog contains two types of spectra extracted from 487 GRBs, and by fitting four different spectral models, this results in a compendium of over 3800 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the Fermi GBM Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  • 20.
    Li, Liang
    et al.
    KTH, School of Engineering Sciences (SCI), Physics. Oskar Klein Centre - AlbaNova, Sverige.
    Wang, Yu
    Shao, Lang
    Wu, Xue-Feng
    Huang, Yong-Feng
    Zhang, Bing
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Centre - AlbaNova, Sverige.
    Yu, Hoi-Fung
    KTH, School of Engineering Sciences (SCI), Physics. Oskar Klein Centre - AlbaNova, Sverige.
    A Large Catalog of Multiwavelength GRB Afterglows. I. Color Evolution and Its Physical Implication2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 234, no 2, article id 26Article in journal (Refereed)
    Abstract [en]

    The spectrum of gamma-ray burst (GRB) afterglows can be studied with color indices. Here, we present a large comprehensive catalog of 70 GRBs with multiwavelength optical transient data on which we perform a systematic study to find the temporal evolution of color indices. We categorize them into two samples based on how well the color indices are evaluated. The Golden sample includes 25 bursts mostly observed by GROND, and the Silver sample includes 45 bursts observed by other telescopes. For the Golden sample, we find that 96% of the color indices do not vary over time. However, the color indices do vary during short periods in most bursts. The observed variations are consistent with effects of (i) the cooling frequency crossing the studied energy bands in a wind medium (43%) and in a constant-density medium (30%), (ii) early dust extinction (12%), (iii) transition from reverse-shock to forward-shock emission (5%), or (iv) an emergent SN emission (10%). We also study the evolutionary properties of the mean color indices for different emission episodes. We find that 86% of the color indices in the 70 bursts show constancy between consecutive ones. The color index variations occur mainly during the late GRB-SN bump, the flare, and early reverse-shock emission components. We further perform a statistical analysis of various observational properties and model parameters (spectral index beta(CI)(o), electron spectral indices p(CI), etc.) using color indices. Overall, we conclude that similar to 90% of colors are constant in time and can be accounted for by the simplest external forward-shock model, while the varying color indices call for more detailed modeling.

  • 21.
    Li, Liang
    et al.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China.;Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden.
    Wu, Xue-Feng
    Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China..
    Lei, Wei-Hua
    Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China..
    Dai, Zi-Gao
    Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China..
    Lian, En-Wei
    Guanxi Univ, GXU NAOC Ctr Astrophys & Space Sci, Dept Phys, Nanning 530004, Peoples R China..
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Constraining the Type of Central Engine of GRBs with Swift Data2018In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 236, no 2, article id 26Article in journal (Refereed)
    Abstract [en]

    The central engine of gamma-ray bursts (GRBs) is poorly constrained. There exist two main candidates: a fast-rotating black hole and a rapidly spinning magnetar. Furthermore, X-ray plateaus are widely accepted to be the energy injection into the external shock. In this paper, we systematically analyze the Swift/XRT light curves of 101 GRBs having plateau phases and known redshifts (before 2017 May). Since a maximum energy budget (similar to 2 x 10(52) erg) exists for magnetars but not for black holes, this provides a good clue to identifying the type of GRB central engine. We calculate the isotropic kinetic energy E-K,(iso) and the isotropic X-ray energy release E-X,E-iso for individual GRBs. We identify three categories based on how likely a black hole harbors a central engine: "Gold" (9 out of 101; both E-X,E-iso and E-K,E-iso exceed the energy budget), "Silver" (69 out of 101; E-X,E-iso less than the limit but E-K,E-iso greater than the limit), and "Bronze" (23 out of 101; the energies are not above the limit). We then derive and test the black hole parameters with the Blandford-Znajek mechanism, and find that the observations of the black hole candidate ("Gold" + "Silver") samples are consistent with the expectations of the black hole model. Furthermore, we also test the magnetar candidate ("Bronze") sample with the magnetar model, and find that the magnetar surface magnetic field (B-p) and initial spin period (P-0) fall into reasonable ranges. Our analysis indicates that if the magnetar wind is isotropic, a magnetar central engine is possible for 20% of the analyzed GRBs. For most GRBs, a black hole is most likely operating.

  • 22. Nolan, P. L.
    et al.
    Abdo, A. A.
    Ackermann, M.
    Ajello, M.
    Allafort, A.
    Antolini, E.
    Atwood, W. B.
    Axelsson, Magnus
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bechtol, K.
    Belfiore, A.
    Bellazzini, R.
    Berenji, B.
    Bignami, G. F.
    Blandford, R. D.
    Bloom, E. D.
    Bonamente, E.
    Bonnell, J.
    Borgland, A. W.
    Bottacini, E.
    Bouvier, A.
    Brandt, T. J.
    Bregeon, J.
    Brigida, M.
    Bruel, P.
    Buehler, R.
    Burnett, T. H.
    Buson, S.
    Caliandro, G. A.
    Cameron, R. A.
    Campana, R.
    Canadas, B.
    Cannon, A.
    Caraveo, P. A.
    Casandjian, J. M.
    Cavazzuti, E.
    Ceccanti, M.
    Cecchi, C.
    Celik, Oe
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiang, J.
    Chipaux, R.
    Ciprini, S.
    Claus, R.
    Cohen-Tanugi, J.
    Cominsky, L. R.
    Conrad, J.
    Corbet, R.
    Cutini, S.
    D'Ammando, F.
    Davis, D. S.
    de Angelis, A.
    DeCesar, M. E.
    DeKlotz, M.
    De Luca, A.
    den Hartog, P. R.
    de Palma, F.
    Dermer, C. D.
    Digel, S. W.
    Do Couto E Silva, E.
    Drell, P. S.
    Drlica-Wagner, A.
    Dubois, R.
    Dumora, D.
    Enoto, T.
    Escande, L.
    Fabiani, D.
    Falletti, L.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Focke, W. B.
    Fortin, P.
    Frailis, M.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Gehrels, N.
    Germani, S.
    Giebels, B.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Godfrey, G.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Gustafsson, M.
    Hadasch, D.
    Hanabata, Y.
    Harding, A. K.
    Hayashida, M.
    Hays, E.
    Hill, A. B.
    Horan, D.
    Hou, X.
    Hughes, R. E.
    Iafrate, G.
    Itoh, R.
    Johannesson, G.
    Johnson, R. P.
    Johnson, T. E.
    Johnson, A. S.
    Johnson, T. J.
    Kamae, T.
    Katagiri, H.
    Kataoka, J.
    Katsuta, J.
    Kawai, N.
    Kerr, M.
    Knoedlseder, J.
    Kocevski, D.
    Kuss, M.
    Lande, J.
    Landriu, D.
    Latronico, L.
    Lemoine-Goumard, M.
    Lionetto, A. M.
    Garde, M. Llena
    Longo, F.
    Loparco, F.
    Lott, B.
    Lovellette, M. N.
    Lubrano, P.
    Madejski, G. M.
    Marelli, M.
    Massaro, E.
    Mazziotta, M. N.
    McConville, W.
    McEnery, J. E.
    Mehault, J.
    Michelson, P. F.
    Minuti, M.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Mongelli, M.
    Monte, C.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Murgia, S.
    Nakamori, T.
    Naumann-Godo, M.
    Norris, J. P.
    Nuss, E.
    Nymark, Tanja
    KTH, School of Engineering Sciences (SCI), Physics.
    Ohno, M.
    Ohsugi, T.
    Okumura, A.
    Omodei, N.
    Orlando, E.
    Ormes, J. F.
    Ozaki, M.
    Paneque, D.
    Panetta, J. H.
    Parent, D.
    Perkins, J. S.
    Pesce-Rollins, M.
    Pierbattista, M.
    Pinchera, M.
    Piron, F.
    Pivato, G.
    Porter, T. A.
    Racusin, J. L.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Ritz, S.
    Rochester, L. S.
    Romani, R. W.
    Roth, M.
    Rousseau, R.
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sadrozinski, H. F. -W
    Salvetti, D.
    Sanchez, D. A.
    Parkinson, P. M. Saz
    Sbarra, C.
    Scargle, J. D.
    Schalk, T. L.
    Sgro, C.
    Shaw, M. S.
    Shrader, C.
    Siskind, E. J.
    Smith, D. A.
    Spandre, G.
    Spinelli, P.
    Stephens, T. E.
    Strickman, M. S.
    Suson, D. J.
    Tajima, H.
    Takahashi, H.
    Takahashi, T.
    Tanaka, T.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Tibaldo, L.
    Tibolla, O.
    Tinebra, F.
    Tinivella, M.
    Torres, D. F.
    Tosti, G.
    Troja, E.
    Uchiyama, Y.
    Vandenbroucke, J.
    Van Etten, A.
    Van Klaveren, B.
    Vasileiou, V.
    Vianello, G.
    Vitale, V.
    Waite, A. P.
    Wallace, E.
    Wang, P.
    Werner, M.
    Winer, B. L.
    Wood, D. L.
    Wood, K. S.
    Wood, M.
    Yang, Z.
    Zimmer, S.
    Fermi large area telescope second source catalog2012In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 199, no 2, p. 31-Article in journal (Refereed)
    Abstract [en]

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  • 23. Paciesas, William S
    et al.
    Meegan, Charles A
    von Kienlin, Andreas
    Bhat, P N
    Bissaldi, Elisabetta
    Briggs, Michael S
    Burgess, J. Michael
    University of Alabama in Huntsville, United States .
    Chaplin, Vandiver
    Connaughton, Valerie
    Diehl, Roland
    Fishman, Gerald J
    Fitzpatrick, Gerard
    Foley, Suzanne
    Gibby, Melissa
    Giles, Misty
    Goldstein, Adam
    Greiner, Jochen
    Gruber, David
    Guiriec, Sylvain
    van der Horst, Alexander J
    Kippen, R Marc
    Kouveliotou, Chryssa
    Lichti, Giselher
    Lin, Lin
    McBreen, Sheila
    Preece, Robert D
    Rau, Arne
    Tierney, Dave
    Wilson-Hodge, Colleen
    The Fermi GBM Gamma-Ray Burst Catalog: The First Two Years2012In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 199, no 1, article id 18Article in journal (Refereed)
    Abstract [en]

    The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  • 24.
    Perri, Silvia
    et al.
    Univ Calabria, Dipartimento Fis, Via P Bucci, I-87036 Arcavacata Di Rende, Italy..
    Servidio, Sergio
    Univ Calabria, Dipartimento Fis, Via P Bucci, I-87036 Arcavacata Di Rende, Italy..
    Vaivads, Andris
    Uppsala universitet, Institutet för rymdfysik, Uppsalaavdelningen.
    Valentini, Francesco
    Univ Calabria, Dipartimento Fis, Via P Bucci, I-87036 Arcavacata Di Rende, Italy..
    Numerical Study on the Validity of the Taylor Hypothesis in Space Plasmas2017In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 231, no 1, article id 4Article in journal (Refereed)
    Abstract [en]

    In situ heliospheric measurements allow us to resolve fluctuations as a function of frequency. A crucial point is to describe the power spectral density as a function of the wavenumber, in order to understand the energy cascade through the scales in terms of plasma turbulence theories. The most favorable situation occurs when the average wind speed is much higher than the phase speed of the plasma modes, equivalent to the fact that the fluctuations' dynamical times are much longer than their typical crossing period through the spacecraft (frozen-in Taylor approximation). Using driven compressible Hall-magneothydrodynamics simulations, in which an "imaginary" spacecraft flies across a time-evolving turbulence, here we explore the limitations of the frozen-in assumption. We find that the Taylor hypothesis is robust down to sub-proton scales, especially for flows with mean velocities typical of the fast solar wind. For slow mean flows (i.e., speeds of the order of the Alfven speed) power spectra are subject to an amplitude shift throughout the scales. At small scales, when dispersive decorrelation mechanisms become significant, the frozen-in assumption is generally violated, in particular for k-vectors almost parallel to the average magnetic field. A discussion in terms of the spacetime autocorrelation function is proposed. These results might be relevant for the interpretation of the observations, in particular for existing and future space missions devoted to very high-resolution measurements.

  • 25. von Kienlin, Andreas
    et al.
    Meegan, Charles A
    Paciesas, William S
    Bhat, P N
    Bissaldi, Elisabetta
    Briggs, Michael S
    Burgess, James Michael
    University of Alabama in Huntsville, United States.
    Byrne, David
    Chaplin, Vandiver
    Cleveland, William
    Connaughton, Valerie
    Collazzi, Andrew C
    Fitzpatrick, Gerard
    Foley, Suzanne
    Gibby, Melissa
    Giles, Misty
    Goldstein, Adam
    Greiner, Jochen
    Gruber, David
    Guiriec, Sylvain
    van der Horst, Alexander J
    Kouveliotou, Chryssa
    Layden, Emily
    McBreen, Sheila
    McGlynn, Sinéad
    Pelassa, Veronique
    Preece, Robert D
    Rau, Arne
    Tierney, Dave
    Wilson-Hodge, Colleen A
    Xiong, Shaolin
    Younes, George
    Yu, Hoi-Fung
    The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years2014In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 211, no 1Article in journal (Refereed)
    Abstract [en]

    This is the second of a series of catalogs of gamma-ray bursts (GRBs) observed with the Fermi Gamma-ray Burst Monitor (GBM). It extends the first two-year catalog by two more years, resulting in an overall list of 953 GBM triggered GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM detected GRBs. For each GRB the location and main characteristics of the prompt emission, the duration, peak flux and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band, where the maximum energy release of GRBs in the instrument reference system is observed and also for a broader energy band from 10-1000 keV, exploiting the full energy range of GBMs low-energy detectors. Furthermore, information is given on the settings and modifications of the triggering criteria and exceptional operational conditions during years three and four in the mission. This second catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  • 26. Wang, Xiang-Gao
    et al.
    Zhang, Bing
    Liang, En-Wei
    Gao, He
    Li, Liang
    Deng, Can-Min
    Qin, Song-Mei
    Tang, Qing-Wen
    Kann, D. Alexander
    Ryde, Felix
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Kumar, Pawan
    HOW BAD OR GOOD ARE THE EXTERNAL FORWARD SHOCK AFTERGLOW MODELS OF GAMMA-RAY BURSTS?2015In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 219, no 1, article id 9Article in journal (Refereed)
    Abstract [en]

    The external forward shock models have been the standard paradigm to interpret the broadband afterglow data of gamma-ray bursts (GRBs). One prediction of the models is that some afterglow temporal breaks at different energy bands should be achromatic; that is, the break times should be the same in different frequencies. Multiwavelength observations in the Swift era have revealed chromatic afterglow behaviors at least in some GRBs, casting doubts on the external forward shock origin of GRB afterglows. In this paper, using a large sample of GRBs with both X-ray and optical afterglow data, we perform a systematic study to address the question: how bad or good are the external forward shock models? Our sample includes 85 GRBs up to 2014 March with well-monitored X-ray and optical light curves. Based on how well the data abide by the external forward shock models, we categorize them into five grades and three samples. The first two grades (Grade I and II) include 45 of 85 GRBs. They show evidence of, or are consistent with having, an achromatic break. The temporal and spectral behaviors in each afterglow segment are consistent with the predictions (the "closure relations") of the forward shock models. These GRBs are included in the Gold sample. The next two grades (Grade III and IV) include 37 of 85 GRBs. They are also consistent with having an achromatic break, even though one or more afterglow segments do not comply with the closure relations. These GRBs are included in the Silver sample. Finally, Grade V (3/85) shows direct evidence of chromatic behaviors, suggesting that the external shock models are inconsistent with the data. These are included in the Bad sample. We further perform statistical analyses of various observational properties (temporal index alpha, spectral index beta, break time t(b)) and model parameters (energy injection index q, electron spectral index p, jet opening angle theta(j), radiative efficiency eta(gamma), and so on) of the GRBs in the Gold sample, and derive constraints on the magnetization parameter epsilon(B) in the forward shock. Overall, we conclude that the simplest external forward shock models can account for the multiwavelength afterglow data of at least half of the GRBs. When more advanced modeling (e.g., long-lasting reverse shock, structured jets, arbitrary circumburst medium density profile) is invoked, up to >90% of the afterglows may be interpreted within the framework of the external shock models.

1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf