Change search
Refine search result
12345 1 - 50 of 227
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aiba, N.
    et al.
    Giroud, C.
    Honda, M.
    Delabie, E.
    Saarelma, S.
    Frassinetti, L
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Lupelli, I.
    Casson, F. J.
    Pamela, S.
    Urano, H.
    Maggi, C. F.
    Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 12, article id 126001Article in journal (Refereed)
    Abstract [en]

    Stability to the type-I edge localized mode (ELM) in JET plasmas was investigated numerically by analyzing the stability to a peeling-ballooning mode with the effects of plasma rotation and ion diamagnetic drift. The numerical analysis was performed by solving the extended Frieman-Rotenberg equation with the MINERVA-DI code. To take into account these effects in the stability analysis self-consistently, the procedure of JET equilibrium reconstruction was updated to include the profiles of ion temperature and toroidal rotation, which are determined based on the measurement data in experiments. With the new procedure and MINERVA-DI, it was identified that the stability analysis including the rotation effect can explain the ELM trigger condition in JET with ITER like wall (JET-ILW), though the stability in JET with carbon wall (JET-C) is hardly affected by rotation. The key difference is that the rotation shear in JET-ILW plasmas analyzed in this study is larger than that in JET-C ones, the shear which enhances the dynamic pressure destabilizing a peeling-ballooning mode. In addition, the increase of the toroidal mode number of the unstable MHD mode determining the ELM trigger condition is also important when the plasma density is high in JET-ILW. Though such modes with high toroidal mode number are strongly stabilized by the ion diamagnetic drift effect, it was found that plasma rotation can sometimes overcome this stabilizing effect and destabilizes the peeling-ballooning modes in JET-ILW.

  • 2. Baron-Wiechec, A.
    et al.
    Fortuna-Zalesna, E.
    Grzonka, J.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Widdowson, A.
    Ayres, C.
    Coad, J. P.
    Hardie, C.
    Heinola, K.
    Matthews, G. F.
    First dust study in JET with the ITER-like wall: sampling, analysis and classification2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 11, article id 113033Article in journal (Refereed)
    Abstract [en]

    Results of the first dust survey in JET with the ITER-Like Wall (JET-ILW) are presented. The sampling was performed using adhesive stickers from the divertor tiles where the greatest material deposition was detected after the first JET-ILW campaign in 2011-2012. The emphasis was especially on sampling and analysis of metal particles (Be and W) with the aim to determine the composition, size, surface topography and internal dust structure using a large set of methods: high-resolution scanning and transmission electron microscopy, focused ion beam, electron diffraction and also wavelength and energy dispersive x-ray spectroscopy. The most important was the identification of beryllium dust both in the form of flakes and droplets with dimensions in the micrometer range. Tungsten, molybdenum, inconel constituents were identified along with many impurity species. The particles are categorised and the origin of the various constituents discussed.

  • 3. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 10, article id 106016Article in journal (Refereed)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 4.
    Ben Yaala, M.
    et al.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Moser, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Steiner, R.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Butoi, B.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Dinca, P.
    Natl Inst Laser Plasma & Radiat Phys, 409 Atomistilor St, Magurele 077125, Romania..
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Marot, L.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Meyer, E.
    Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland..
    Deuterium as a cleaning gas for ITER first mirrors: experimental study on beryllium deposits from laboratory and JET-ILW2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096027Article in journal (Refereed)
    Abstract [en]

    Cleaning techniques for metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). Previous plasma cleaning studies were conducted on mirrors contaminated with beryllium and tungsten where argon and/or helium were employed as process gas, demonstrating removal of contamination and recovery of optical properties. Still, both abovementioned process gases have a non-negligible sputtering yield on mirrors. In this work, we explored the possibility to use a sputter gas having a small impact on mirrors while being efficient on Be deposits, e.g. deuterium. Two sputtering regimes were studied, on laboratory deposits as well as on mirrors exposed in .TET-ILW, namely physical sputtering (220eV ion energy) and chemically assisted physical sputtering (60 eV ion energy) using capacitively coupled plasma with radio frequency. The removal of Be and mixed Be/W contaminants, as well as the recovery of reflectivity, was achieved when deuterium was employed at 220eV while cleaning at 60eV was only fully efficient on laboratory beryllium deposits. On mirrors exposed in JET-ILW, the situation is more complex due to the presence of tungsten in the contaminant film, leading to the formation of a tungsten enriched surface that is not easily sputtered, especially at 60eV.

  • 5.
    Bergkvist, Tommy
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Holmström, Kerstin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Non-linear dynamics of Alfvén eigenmodes excited by thermonulcear alpha particles in the presence of ion cyclotron resonance heating2007In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, no 9, p. 1131-1141Article in journal (Refereed)
    Abstract [en]

    Alfvén eigenmodes (AEs) excited by thermonuclear α-particles can degrade the heating efficiency by spatial redistribution of the resonant α-particles. Changes of the orbit invariants in phase space by collisions and interactions with other waves, such as magnetosonic waves during ion cyclotron resonance heating (ICRH), lead to changes in the phase between the α-particles and AEs, causing a decorrelation of the interactions and stronger redistribution of the α-particles. Cyclotron interactions increase the decorrelation of the AE interactions with the high-energy ions and hence a stronger radial redistribution of the high-energy α-particles by the AEs. Renewal of the distribution function by thermonuclear reactions and losses of α-particles to the wall lead to a continuous drive of the AEs and a radial redistribution of the α-particles. The condition for excitation of AEs is shown to depend on the heating scenario where heating at the low field side creates a significant population of high-energy non-standard orbits which drive the modes. The redistribution results in a reduction in the averaged α-particle energy and a degradation of the heating efficiency. The effect on the distribution function in the presence of several unstable modes is not additive and the particle redistribution is found to saturate with an increasing number of modes.

  • 6.
    Bergkvist, Tommy
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, T.
    Laxåback, Martin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Non-linear study of fast particle excitation of global Alfvén eigenmodes during ICRH2005In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 45, p. 485-493Article in journal (Refereed)
    Abstract [en]

    High-power ion–cyclotron resonance heating (ICRH) can produce centrally peaked fast ion distributions with wide non-standard drift orbits exciting Alfvén eigenmodes (AEs). The dynamics of the AE excitation depends not only on the anisotropy and the peaking of the fast ion distribution but also on the decorrelation of the AE interactions and the renewal of the fast ions resonant with the AE by ion–cyclotron interactions. A method of self-consistently including the evolution of the distribution function of fast ions during excitation of AEs and ICRH has been developed and implemented in the SELFO code. Numerical simulations of the AE dynamics and ICRH give a variation of the AE amplitude consistent with the experimentally observed splitting of the mode frequency. The experimentally observed fast damping of the mode as the ICRH is switched off is also evident in the simulations.

  • 7.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Possnert, G.
    Bykov, Igor
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Heinola, K.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Miettunen, J.
    Widdowson, A.
    Riccardo, V.
    Nunes, I.
    Stamp, M.
    Brezinsek, S.
    Groth, M.
    Kurki-Suonio, T.
    Likonen, J.
    Coad, J. P.
    Borodin, D.
    Kirschner, A.
    Schmid, K.
    Krieger, K.
    First results from the Be-10 marker experiment in JET with ITER-like wall2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 8, p. 082004-Article in journal (Refereed)
    Abstract [en]

    When the ITER-like wall was installed in JET, one of the 218 Be inner wall guard limiter tiles had been enriched with Be-10 as a bulk isotopic marker. During the shutdown in 2012-2013, a set of tiles were sampled nondestructively to collect material for accelerator mass spectroscopy measurements of Be-10 concentration. The letter shows how the marker experiment was set up, presents first results and compares them to preliminary predictions of marker redistribution, made with the ASCOT numerical code. Finally an outline is shown of what experimental data are likely to become available later and the possibilities for comparison with modelling using the WallDYN, ERO and ASCOT codes are discussed.

  • 8. Berk, H. L.
    et al.
    Boswell, C. J.
    Borba, D.
    Figueiredo, A. C. A.
    Johnson, Thomas J.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Nave, M. F. F.
    Pinches, S. D.
    Sharapov, S. E.
    Explanation of the JET n=0 chirping mode2006In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, no 10, p. S888-S897Article in journal (Refereed)
    Abstract [en]

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n = 0) are observed in the JET tokamak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a mode related to the geodesic acoustic mode. The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit bounce resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma.

  • 9. Beurskens, M. N. A.
    et al.
    Arnoux, G.
    Brezinsek, A. S.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Saarelma, S.
    Solano, E.
    et al,
    Pedestal and ELM response to impurity seeding in JET advanced scenario plasmas2008In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 48, no 9Article in journal (Refereed)
    Abstract [en]

    Advanced scenario plasmas must often be run at low densities and high power, leading to hot edge temperatures and consequent power handling issues at plasma - surface interaction zones. Experiments at JET are addressing this issue by exploring the use of extrinsic impurity seeding and D-2 puffing to reduce heat fluxes. The experiments presented in this paper continue the line of advanced tokamak ( AT) scenario studies at high triangularity in JET by concentrating on the characterization of the edge pedestal and the ELM behaviour with deuterium and/or light impurity fuelling (neon, nitrogen). Both injection of extrinsic impurities and D2 puffing are shown to have a significant impact on the edge pedestal in typical JET AT conditions. The ELM energy loss, Delta W-ELM/W-dia, can be reduced to below 3% and the maximum ELM penetration depth can be limited to r/a > 0.7, thus enhancing the possibility for sustainable internal transport barriers at large plasma radius. These conditions can be achieved in two separate domains, either at a radiated power fraction (F-rad) of 30% or at a fraction of > 50%. At the lower Frad the ELMs are type I and a high pedestal pressure is maintained, but the occasional large ELM may still occur. At F-rad > 50% the pedestal pressure is degraded by 30-50%, but the ELMs are degraded to type III. The intermediate regime at F-rad similar to 40% is unattractive for ITB scenarios because large type I ELMs occur intermittently during the predominantly type III ELM phases (compound type I/III). F-rad = 30% can be obtained with D-2 fuelling alone, whereas neon or nitrogen seeding is needed to achieve F-rad > 50%. Only a limited number of tests have been carried out with nitrogen seeding, with the preliminary conclusion that the plasma edge behaviour is similar to that with neon seeding once the radiated fraction is matched.

  • 10. Beurskens, M. N. A.
    et al.
    Dunne, M. G.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Bernert, M.
    Cavedon, M.
    Fischer, R.
    Järvinen, A.
    Kallenbach, A.
    Laggner, F. M.
    McDermott, R. M.
    Potzel, S.
    Schweinzer, J.
    Tardini, G.
    Viezzer, E.
    Wolfrum, E.
    The role of carbon and nitrogen on the H-mode confinement in ASDEX Upgrade with a metal wall2016In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, no 5, article id 056014Article in journal (Refereed)
    Abstract [en]

    Carbon (CD4) and nitrogen (N2) have been seeded in ASDEX Upgrade (AUG) with a tungsten wall and have both led to a 20-30% confinement improvement. The reference plasma is a standard target plasma with I p /B T = 1 MA/2.5 T, total input power P tot ∼ 12 MW and normalized pressure of β N ∼ 1.8. Carbon and nitrogen are almost perfectly exchangeable for the core, pedestal and divertor plasma in this experiment where impurity concentrations of C and N of 2% are achieved and Z eff only mildly increases from ∼1.3 to ∼1.7. As the radiation potentials of C and N are similar and peak well below 100 eV, both impurities act as divertor radiators and radiate well outside the pedestal region. The outer divertor is purposely kept in an attached state when C and N are seeded to avoid confinement degradation by detachment. As reported in earlier publications for nitrogen, carbon is also seen to reduce the high field side high density (the so-called HFSHD) in the scrape off layer above the inner divertor strike point by about 50%. This is accompanied by a confinement improvement for both low (δ ∼ 0.25) and high (δ ∼ 0.4) triangularity configurations for both seeding gases, due to an increase of pedestal temperature and stiff core temperature profiles. The electron density profiles show no apparent change due to the seeding. As an orthogonal effect, increasing the triangularity leads to an additionally increased pedestal density, independent of the impurity seeding. This experiment further closes the gap in understanding the confinement differences observed in carbon and metal wall devices; the absence of carbon can be substituted by nitrogen which leads to a similar confinement benefit. So far, no definite physics explanation for the confinement enhancement has been obtained, but the experimental observations in this paper provide input for further model development.

  • 11. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Challis, C.
    Giroud, C.
    Saarelma, S.
    Alper, B.
    Angioni, C.
    Bilkova, P.
    Bourdelle, C.
    Brezinsek, S.
    Buratti, P.
    Calabro, G.
    Eich, T.
    Flanagan, J.
    Giovannozzi, E.
    Groth, M.
    Hobirk, J.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    de la Luna, E.
    Kempenaars, M.
    Maddison, G.
    Maggi, C.
    Mantica, P.
    Maslov, M.
    Matthews, G.
    Mayoral, M-L
    Neu, R.
    Nunes, I.
    Osborne, T.
    Rimini, F.
    Scannell, R.
    Solano, E. R.
    Snyder, P. B.
    Voitsekhovitch, I.
    de Vries, Peter
    Global and pedestal confinement in JET with a Be/W metallic wall2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 4, p. 043001-Article in journal (Refereed)
    Abstract [en]

    Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I-type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H-98(y,H- 2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILWcompared to JET-C at low power fractions Ploss/P-thr,(08)< 2 (where P-loss is (P-in-dW/dt), and P-thr,(08) the L-H power threshold from Martin et al 2008 (J. Phys. Conf. Ser. 123 012033)). Higher power fractions have thus far not been achieved in the baseline plasmas. At Ploss/P-thr,P- 08 > 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H-98((y, 2)) = 0.8 is obtained, compared to H-98((y, 2)) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H-98((y, 2)) <= 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling-ballooning stability limit and the ELM collapse time has increased to 2ms from typically 200 mu s in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured p(ped))/(predicted p(ped), EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.

  • 12. Beurskens, M. N. A.
    et al.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Challis, C.
    Osborne, T.
    Snyder, P. B.
    Alper, B.
    Angioni, C.
    Bourdelle, C.
    Buratti, P.
    Crisanti, F.
    Giovannozzi, E.
    Giroud, C.
    Groebner, R.
    Hobirk, J.
    Jenkins, I.
    Joffrin, E.
    Leyland, M. J.
    Lomas, P.
    Mantica, P.
    McDonald, D.
    Nunes, I.
    Rimini, F.
    Saarelma, S.
    Voitsekhovitch, I.
    De Vries, P.
    Zarzoso, D.
    Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 1, p. 013001-Article in journal (Refereed)
    Abstract [en]

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ∼ 1.5-2, H98 ∼ 1, whereas the hybrid plasmas have βN ∼ 2.5-3, H98 &lt; 1.5. The database study contains both low- (δ ∼ 0.2-0.25) and high-triangularity (δ ∼ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ∼ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.

  • 13.
    Blanken, T. C.
    et al.
    Eindhoven Univ Technol, Control Syst Technol Grp, Dept Mech Engn, POB 513, NL-5600 MB Eindhoven, Netherlands.;Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Jonsson, T.
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Vallejos, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Vignitchouk, Ladislas
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Dori, V
    Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia..
    Real-time plasma state monitoring and supervisory control on TCV2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026017Article in journal (Refereed)
    Abstract [en]

    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.

  • 14. Bonanomi, N.
    et al.
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Fridström, Richard
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Moon, Sunwoo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I
    et al,
    Role of fast ion pressure in the isotope effect in JET L-mode plasmas2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096030Article in journal (Refereed)
    Abstract [en]

    This paper presents results of JET ITER-like wall L-mode experiments in hydrogen and deuterium (D) plasmas, dedicated to the study of the isotope dependence of ion heat transport by determination of the ion critical gradient and stiffness by varying the ion cyclotron resonance heating power deposition. When no strong role of fast ions in the plasma core is expected, the main difference between the two isotope plasmas is determined by the plasma edge and the core behavior is consistent with a gyro-Bohm scaling. When the heating power (and the fast ion pressure) is increased, in addition to the difference in the edge region, also the plasma core shows substantial changes. The stabilization of ion heat transport by fast ions, clearly visible in D plasmas, appears to be weaker in H plasmas, resulting in a higher ion heat flux in H with apparent anti-gyro-Bohm mass scaling. The difference is found to be caused by the different fast ion pressure between H and D plasmas, related to the heating power settings and to the different fast ion slowing down time, and is completely accounted for in non-linear gyrokinetic simulations. The application of the TGLF quasi-linear model to this set of data is also discussed.

  • 15. Bonanomi, N.
    et al.
    Mantica, P.
    Di Siena, A.
    Delabie, E.
    Giroud, C.
    Johnson, Thomas
    KTH.
    Lerche, E.
    Menmuir, S.
    Tsalas, M.
    Van Eester, D.
    Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 5, article id 056025Article in journal (Refereed)
    Abstract [en]

    The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (He-3)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic He-3 ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the He-3 distribution function has also been studied.

  • 16.
    Bonelli, F.
    et al.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Varoutis, S.
    KIT, Inst Tech Phys, Vacuum Dept, Karlsruhe, Germany.;Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Self-consistent coupling of DSMC method and SOLPS code for modeling tokamak particle exhaust2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 6, article id 066037Article in journal (Refereed)
    Abstract [en]

    In this work, an investigation of the neutral gas flow in the JET sub-divertor area is presented, with respect to the interaction between the plasma side and the pumping side. The edge plasma side is simulated with the SOLPS code, while the sub-divertor area is modeled by means of the direct simulation Monte Carlo (DSMC) method, which in the last few years has proved well able to describe rarefied, collisional flows in tokamak sub-divertor structures. Four different plasma scenarios have been selected, and for each of them a user-defined, iterative procedure between SOLPS and DSMC has been established, using the neutral flux as the key communication term between the two codes. The goal is to understand and quantify the mutual influence between the two regions in a self-consistent manner, that is to say, how the particle exhaust pumping system controls the upstream plasma conditions. Parametric studies of the flow conditions in the sub-divertor, including additional flow outlets and variations of the cryopump capture coefficient, have been performed as well, in order to understand their overall impact on the flow field. The DSMC analyses resulted in the calculation of both the macroscopic quantities-i.e. temperature, number density and pressure-and the recirculation fluxes towards the plasma chamber. The consistent values for the recirculation rates were found to be smaller than those according to the initial standard assumption made by SOLPS.

  • 17. Bowman, C.
    et al.
    Dickinson, D.
    Horvath, L.
    Lunniss, A. E.
    Wilson, H. R.
    Cziegler, I.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Gibson, K.
    Kirk, A.
    Lipschultz, B.
    Maggi, C. F.
    Roach, C. M.
    Saarelma, S.
    Snyder, P. B.
    Thornton, A.
    Wynn, A.
    Pedestal evolution physics in low triangularity JET tokamak discharges with ITER-like wall2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 1, article id 016021Article in journal (Refereed)
    Abstract [en]

    The pressure gradient of the high confinement pedestal region at the edge of tokamak plasmas rapidly collapses during plasma eruptions called edge localised modes (ELMs), and then re-builds over a longer time scale before the next ELM. The physics that controls the evolution of the JET pedestal between ELMs is analysed for 1.4 MA, 1.7 T, low triangularity, delta = 0.2, discharges with the ITER-like wall, finding that the pressure gradient typically tracks the ideal magneto-hydrodynamic ballooning limit, consistent with a role for the kinetic ballooning mode. Furthermore, the pedestal width is often influenced by the region of plasma that has second stability access to the ballooning mode, which can explain its sometimes complex evolution between ELMs. A local gyrokinetic analysis of a second stable flux surface reveals stability to kinetic ballooning modes; global effects are expected to provide a destabilising mechanism and need to be retained in such second stable situations. As well as an electronscale electron temperature gradient mode, ion scale instabilities associated with this flux surface include an electro-magnetic trapped electron branch and two electrostatic branches propagating in the ion direction, one with high radial wavenumber. In these second stability situations, the ELM is triggered by a peeling-ballooning mode; otherwise the pedestal is somewhat below the peeling-ballooning mode marginal stability boundary at ELM onset. In this latter situation, there is evidence that higher frequency ELMs are paced by an oscillation in the plasma, causing a crash in the pedestal before the peeling-ballooning boundary is reached. A model is proposed in which the oscillation is associated with hot plasma filaments that are pushed out towards the plasma edge by a ballooning mode, draining their free energy into the cooler plasma there, and then relaxing back to repeat the process. The results suggest that avoiding the oscillation and maximising the region of plasma that has second stability access will lead to the highest pedestal heights and, therefore, best confinement-a key result for optimising the fusion performance of JET and future tokamaks, such as ITER.

  • 18.
    Brezinsek, S.
    et al.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Kirschner, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Mayer, M.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Baron-Wiechec, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Borodkina, I
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Borodin, D.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Coffey, I
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Coenen, J.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    den Harder, N.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Eksaeva, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Guillemaut, C.
    Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Heinola, K.
    IAEA, POB 100, A-1400 Vienna, Austria.;Univ Helsinki, Dept Phys, POB 64, FIN-00014 Helsinki, Finland..
    Huber, A.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Huber, V
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Imrisek, M.
    Czech Acad Sci, Inst Plasma Phys, Prague 18200, Czech Republic..
    Jachmich, S.
    Ecole Royale Mil, LPP, Koninkllijke Mil Sch, B-1000 Brussels, Belgium..
    Pawelec, E.
    Opole Univ, Inst Phys, Oleska 48, PL-45052 Opole, Poland..
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Krat, S.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Sergienko, G.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Matthews, G. F.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Meigs, A. G.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Wiesen, S.
    Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, TEC, D-52425 Julich, Germany..
    Widdowson, A.
    CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Erosion, screening, and migration of tungsten in the JET divertor2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 9, article id 096035Article in journal (Refereed)
    Abstract [en]

    The erosion of tungsten (W), induced by the bombardment of plasma and impurity particles, determines the lifetime of plasma-facing components as well as impacting on plasma performance by the influx of W into the confined region. The screening of W by the divertor and the transport of W in the plasma determines largely the W content in the plasma core, but the W source strength itself has a vital impact on this process. The JET tokamak experiment provides access to a large set of W erosion-determining parameters and permits a detailed description of the W source in the divertor closest to the ITER one: (i) effective sputtering yields and fluxes as function of impact energy of intrinsic (Be, C) and extrinsic (Ne, N) impurities as well as hydrogenic isotopes (H, D) are determined and predictions for the tritium (T) isotope are made. This includes the quantification of intra- and inter-edge localised mode (ELM) contributions to the total W source in H-mode plasmas which vary owing to the complex flux compositions and energy distributions in the corresponding phases. The sputtering threshold behaviour and the spectroscopic composition analysis provides an insight in the dominating species and plasma phases causing W erosion. (ii) The interplay between the net and gross W erosion source is discussed considering (prompt) re-deposition, thus, the immediate return of W ions back to the surface due to their large Larmor radius, and surface roughness, thus, the difference between smooth bulk-W and rough W-coating components used in the JET divertor. Both effects impact on the balance equation of local W erosion and deposition. (iii) Post-mortem analysis reveals the net erosion/deposition pattern and the W migration paths over long periods of plasma operation identifying the net W transport to remote areas. This W transport is related to the divertor plasma regime, e.g. attached operation with high impact energies of impinging particles or detached operation, as well as to the applied magnetic configuration in the divertor, e.g. close divertor with good geometrical screening of W or open divertor configuration with poor screening. JET equipped with the ITER-like wall (ILW) provided unique access to the net W erosion rate within a series of 151 subsequent H-mode discharges (magnetic field: B-t = 2.0 T, plasma current: I-p = 2.0 MA, auxiliary power P-aux = 12 MW) in one magnetic configuration accumulating 900 s of plasma with particle fluences in the range of 5-6 x 10(26) D(+ )m(-2) in the semi-detached inner and attached outer divertor leg. The comparison of W spectroscopy in the intra-ELM and inter-ELM phases with post-mortem analysis of W marker tiles provides a set of gross and net W erosion values at the outer target plate. ERO code simulations are applied to both divertor leg conditions and reproduce the erosion/deposition pattern as well as confirm the high experimentally observed prompt W re-deposition factors of more than 95% in the intra- and inter-ELM phase of the unseeded deuterium H-mode plasma. Conclusions to the expected divertor conditions in ITER as well as to the JET operation in the DT plasma mixture are drawn on basis of this unique benchmark experiment.

  • 19. Brezinsek, S.
    et al.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zaplotnik, R.
    et al.,
    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 11, article id 116041Article in journal (Refereed)
    Abstract [en]

    The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.

  • 20. Brezinsek, S.
    et al.
    Widdowson, A.
    Mayer, M.
    Philipps, V.
    Baron-Wiechec, P.
    Coenen, J. W.
    Heinola, K.
    Huber, A.
    Likonen, J.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stamp, M. F.
    Borodin, D.
    Coad, J. P.
    Carrasco, Alvaro Garcia
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Kirschner, A.
    Krat, S.
    Krieger, K.
    Lipschultz, B.
    Linsmeier, Ch.
    Matthews, G. F.
    Schmid, K.
    Beryllium migration in JET ITER-like wall plasmas2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 6, article id 063021Article in journal (Refereed)
    Abstract [en]

    JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (E-in = 35 eV) and more than 100%, caused by Be self-sputtering (E-in = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at E-in = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of magnitude. Within the divertor, Be performs far fewer re-erosion and transport steps than C due to an energetic threshold for Be sputtering, and inhibits as a result of this the transport to the divertor floor and the pump duct entrance. The target plates in the JET-ILW inner divertor represent at the strike line a permanent net erosion zone, in contrast to the net deposition zone in JET-C with thick carbon deposits on the CFC (carbon-fibre composite) plates. The Be migration identified is consistent with the observed low long-term fuel retention and dust production with the JET-ILW.

  • 21.
    Brunsell, Per R.
    et al.
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Kuldkepp, Mattias
    KTH, School of Engineering Sciences (SCI), Physics.
    Menmuir, Sheena
    KTH, School of Engineering Sciences (SCI), Physics.
    Cecconello, Marco
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Hedqvist, Anders
    KTH, School of Engineering Sciences (SCI), Physics.
    Yadikin, Dimitry
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Drake, James Robert
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R2006In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, no 11, p. 904-913Article in journal (Refereed)
    Abstract [en]

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  • 22.
    Carralero, D.
    et al.
    EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Recent progress towards a quantitative description of filamentary SOL transport2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 5, article id 056044Article in journal (Refereed)
    Abstract [en]

    A summary of recent results on filamentary transport, mostly obtained with the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of scrape-off layer (SOL) filamentary transport. A clear correlation is found between L-mode density shoulder formation in the outer midplane and a transition between the sheath-limited and the inertial filamentary regimes. Divertor collisionality is found to be the parameter triggering the transition. A clear reduction of the ion temperature takes place in the far SOL after the transition, both for the background and the filaments. This coincides with a strong variation of the ion temperature distribution, which deviates from Gaussianity and becomes dominated by a strong peak below 5 eV. The filament transition mechanism triggered by a critical value of collisionality seems to be generally applicable to inter-ELM H-mode plasmas, although a secondary threshold related to deuterium fueling is observed. EMC3-EIRENE simulations of neutral dynamics show that an ionization front near the main chamber wall is formed after the shoulder formation. Finally, a clear increase of SOL opacity to neutrals is observed, associated with the shoulder formation. A common SOL transport framework is proposed to account for all these results, and their potential implications for future generation devices are discussed.

  • 23. Castaldo, C.
    et al.
    Ratynskaia, Svetlana V.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Pericoli, V.
    de Angelis, U.
    Rypdal, K.
    Pieroni, L.
    Giovannozzi, E.
    Maddaluno, G.
    Marmolino, C.
    Rufoloni, A.
    Tuccillo, A.
    Kretschmer, M.
    Morfill, G. E.
    Diagnostics of fast dust particles in tokamak edge plasmas2007In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, no 7, p. L5-L9Article in journal (Refereed)
    Abstract [en]

    The use of electrostatic probes as a diagnostic tool of the dust particles in the tokamak edge plasmas is investigated. Probe measurements of electrostatic fluctuations in the scrape-off layer of the Frascati Tokamak Upgrade revealed that some features of the signals can be explained only by a local non-propagating phenomenon. These signal features are shown to be both in qualitative and quantitative agreement with ionization, and consequent extra charge collected by the probes, due to the impact of micrometre-sized dust at a velocity of the order of 10 km s(- 1). Electron microscope analysis of the probe surface yielded direct support for such an interpretation.

  • 24.
    Causa, F.
    et al.
    CNR, Ist Fis Plasma Piero Caldirola, Via R Cozzi 53, I-20125 Milan, Italy.;CNR, Ist Fis Plasma, Via R Cozzi 53, I-20125 Milan, Italy..
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Zito, P.
    ENEA, Fus & Nucl Safety Dept, CR Frascati, Via E Fermi 45, I-00044 Rome, Italy..
    Analysis of runaway electron expulsion during tokamak instabilities detected by a single-channel Cherenkov probe in FTU2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 4, article id 046013Article in journal (Refereed)
    Abstract [en]

    The expulsion of runaway electrons (REs) during different types of tokamak instabilities is analysed by means of a Cherenkov probe inserted into the scrape-off layer of the FTU tokamak. One such type of instability, the well-known tearing mode, is involved in disruptive plasma termination events, during which the risk of RE avalanche multiplication is highest. The second type, known as anomalous Doppler instability, influences RE dynamics by enhancing pitch angle scattering. Three scenarios are analysed here, characterised by different RE generation rates and mechanisms. The main conclusions are drawn from correlations between the Cherenkov probe and other diagnostics. In particular, the Cherenkov probe permits the detection of fast electron expulsion with a high level of detail, presenting peaks with 100% signal contrast during tearing mode growth and rotation, and sub-peak structures reflecting the interplay between the magnetic island formed by the tearing mode, RE diffusion during island rotation and the geometry of obstacles in the vessel. Correlations between the Cherenkov signal, hard x-ray emission and electron cyclotron emission reveal the impulsive development of the anomalous Doppler instability with instability rise time in the microsecond scale resolved by the high time-resolution of the Cherenkov probe.

  • 25. Challis, C. D.
    et al.
    Garcia, J.
    Beurskens, M.
    Buratti, P.
    Delabie, E.
    Drewelow, P.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Giroud, C.
    Hawkes, N.
    Hobirk, J.
    Joffrin, E.
    Keeling, D.
    King, D. B.
    Maggi, C. F.
    Mailloux, J.
    Marchetto, C.
    McDonald, D.
    Nunes, I.
    Pucella, G.
    Saarelma, S.
    Simpson, J.
    Improved confinement in JET high β plasmas with an ITER-like wall2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 5, article id 053031Article in journal (Refereed)
    Abstract [en]

    The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes. It was found that the power degradation of thermal energy confinement was weak with the ILW; much weaker than the IPB98(y,2) scaling and resulting in an increase in normalized confinement from H<inf>98</inf> ∼ 0.9 at β<inf>N</inf> ∼ 1.5 to H<inf>98</inf> ∼ 1.2-1.3 at β<inf>N</inf> ∼ 2.5 - 3.0 as the power was increased (where H<inf>98</inf> = τ<inf>E</inf>/τ<inf>IPB98(y,2)</inf> and β<inf>N</inf> = β<inf>T</inf>B<inf>T</inf>/aI<inf>P</inf> in % T/mMA). This reproduces the general trend in JET of higher normalized confinement in the so-called 'hybrid' domain, where normalized β is typically above 2.5, compared with 'baseline' ELMy H-mode plasmas with β<inf>N</inf> ∼ 1.5 - 2.0. This weak power degradation of confinement, which was also seen with the C-wall experiments at low triangularity, is due to both increased edge pedestal pressure and core pressure peaking at high power. By contrast, the high triangularity C-wall plasmas exhibited elevated H<inf>98</inf> over a wide power range with strong, IPB98(y,2)-like, power degradation. This strong power degradation of confinement appears to be linked to an increase in the source of neutral particles from the wall as the power increased, an effect that was not reproduced with the ILW. The reason for the loss of improved confinement domain at low power with the ILW is yet to be clarified, but contributing factors may include changes in the rate of gas injection, wall recycling, plasma composition and radiation. The results presented in this paper show that the choice of wall materials can strongly affect plasma performance, even changing confinement scalings that are relied upon for extrapolation to future devices.

  • 26. Chapman, I. T.
    et al.
    Graves, J. P.
    Sauter, O.
    Zucca, C.
    Asunta, O.
    Buttery, R. J.
    Coda, S.
    Goodman, T.
    Igochine, V.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Jucker, M.
    La Haye, R. J.
    Lennholm, M.
    Power requirements for electron cyclotron current drive and ion cyclotron resonance heating for sawtooth control in ITER2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 6, p. 066001-Article in journal (Refereed)
    Abstract [en]

    13MW of electron cyclotron current drive (ECCD) power deposited inside the q = 1 surface is likely to reduce the sawtooth period in ITER baseline scenario below the level empirically predicted to trigger neoclassical tearing modes (NTMs). However, since the ECCD control scheme is solely predicated upon changing the local magnetic shear, it is prudent to plan to use a complementary scheme which directly decreases the potential energy of the kink mode in order to reduce the sawtooth period. In the event that the natural sawtooth period is longer than expected, due to enhanced a particle stabilization for instance, this ancillary sawtooth control can be provided from >10MW of ion cyclotron resonance heating (ICRH) power with a resonance just inside the q = 1 surface. Both ECCD and ICRH control schemes would benefit greatly from active feedback of the deposition with respect to the rational surface. If the q = 1 surface can be maintained closer to the magnetic axis, the efficacy of ECCD and ICRH schemes significantly increases, the negative effect on the fusion gain is reduced, and off-axis negative-ion neutral beam injection (NNBI) can also be considered for sawtooth control. Consequently, schemes to reduce the q = 1 radius are highly desirable, such as early heating to delay the current penetration and, of course, active sawtooth destabilization to mediate small frequent sawteeth and retain a small q = 1 radius. Finally, there remains a residual risk that the ECCD + ICRH control actuators cannot keep the sawtooth period below the threshold for triggering NTMs (since this is derived only from empirical scaling and the control modelling has numerous caveats). If this is the case, a secondary control scheme of sawtooth stabilization via ECCD + ICRH + NNBI, interspersed with deliberate triggering of a crash through auxiliary power reduction and simultaneous pre-emptive NTM control by off-axis ECCD has been considered, permitting long transient periods with high fusion gain. The power requirements for the necessary degree of sawtooth control using either destabilization or stabilization schemes are expected to be within the specification of anticipated ICRH and ECRH heating in ITER, provided the requisite power can be dedicated to sawtooth control.

  • 27. Citrin, J.
    et al.
    Jenko, F.
    Mantica, P.
    Told, D.
    Bourdelle, C.
    Dumont, R.
    Garcia, J.
    Haverkort, J. W.
    Hogeweij, G. M. D.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Pueschel, M. J.
    Ion temperature profile stiffness: non-linear gyrokinetic simulations and comparison with experiment2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 2, p. 023008-Article in journal (Refereed)
    Abstract [en]

    Recent experimental observations at JET show evidence of reduced ion temperature profile stiffness. An extensive set of nonlinear gyrokinetic simulations are performed based on the experimental discharges, investigating the physical mechanism behind the observations. The impact on the ion heat flux of various parameters that differ within the data-set are explored. These parameters include the safety factor, magnetic shear, toroidal flow shear, effect of rotation on the magnetohydrodynamic equilibrium, R/L-n, beta(e), Z(eff), T-e/T-i, and the fast-particle content. While previously hypothesized to be an important factor in the stiffness reduction, the combined effect of toroidal flow shear and low magnetic shear is not predicted by the simulations to lead to a significant reduction in ion heat flux, due both to an insufficient magnitude of flow shear and significant parallel velocity gradient destabilization. It is however found that nonlinear electromagnetic effects due to both thermal and fast-particle pressure gradients, even at low beta(e), can significantly reduce the ion heat flux, and is a key factor in explaining the experimental observations. A total of four discharges are examined, at both inner and outer radii. For all cases studied, the simulated and experimental ion heat flux values agree within reasonable variations of input parameters around the experimental uncertainties.

  • 28. Coad, J. P.
    et al.
    Likonen, J.
    Rubel, Marek J.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Vainonen-Ahlgren, E.
    Hole, D. E.
    Sajavaara, T.
    Renvall, T.
    Matthews, G. F.
    Overview of material re-deposition and fuel retention studies at JET with the Gas Box divertor2006In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, no 2, p. 350-366Article in journal (Refereed)
    Abstract [en]

    in the period 1998-2001 the JET tokamak was operated with the MkII Gas Box divertor. On two occasions during that period a number of limiter and divertor tiles were retrieved from the torus and then examined ex situ with surface sensitive techniques. Erosion and deposition patterns were determined in order to assess the material erosion, material migration and fuel inventory on plasma facing components. Tracer techniques, e.g. injection of C-13 labelled methane and tiles coated with a low-Z and high-Z marker layer, were used to enhance the volume of information on the material transport. The results show significant asymmetry in the distribution of fuel and plasma impurity species between the inner (net deposition area) and the outer (net erosion) divertor channels. No significant formation of highly hydrogenated carbon films has been found in the Gas Box structure. The important processes for material migration, and the influence of operation scenarios on the morphology of the deposits are discussed. Comparison is also made with results obtained following previous divertor campaigns.

  • 29. Coda, S.
    et al.
    Ahn, J.
    Albanese, R.
    Alberti, S.
    Alessi, E.
    Allan, S.
    Anand, H.
    Anastassiou, G.
    Andrèbe, Y.
    Angioni, C.
    Ariola, M.
    Bernert, M.
    Beurskens, M.
    Bin, W.
    Blanchard, P.
    Blanken, T. C.
    Boedo, J. A.
    Bolzonella, T.
    Bouquey, F.
    Braunmüller, F. H.
    Bufferand, H.
    Buratti, P.
    Calabró, G.
    Camenen, Y.
    Carnevale, D.
    Carpanese, F.
    Causa, F.
    Cesario, R.
    Chapman, I. T.
    Chellai, O.
    Choi, D.
    Cianfarani, C.
    Ciraolo, G.
    Citrin, J.
    Costea, S.
    Crisanti, F.
    Cruz, N.
    Czarnecka, A.
    Decker, J.
    De Masi, G.
    De Tommasi, G.
    Douai, D.
    Dunne, M.
    Duval, B. P.
    Eich, T.
    Elmore, S.
    Esposito, B.
    Faitsch, M.
    Fasoli, A.
    Fedorczak, N.
    Felici, F.
    Février, O.
    Ficker, O.
    Fietz, S.
    Fontana, M.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Furno, I.
    Galeani, S.
    Gallo, A.
    Galperti, C.
    Garavaglia, S.
    Garrido, I.
    Geiger, B.
    Giovannozzi, E.
    Gobbin, M.
    Goodman, T. P.
    Gorini, G.
    Gospodarczyk, M.
    Granucci, G.
    Graves, J. P.
    Guirlet, R.
    Hakola, A.
    Ham, C.
    Harrison, J.
    Hawke, J.
    Hennequin, P.
    Hnat, B.
    Hogeweij, D.
    Hogge, J. -P
    Honoré, C.
    Hopf, C.
    Horáček, J.
    Huang, Z.
    Igochine, V.
    Innocente, P.
    Ionita Schrittwieser, C.
    Isliker, H.
    Jacquier, R.
    Jardin, A.
    Kamleitner, J.
    Karpushov, A.
    Keeling, D. L.
    Kirneva, N.
    Kong, M.
    Koubiti, M.
    Kovacic, J.
    Krämer-Flecken, A.
    Krawczyk, N.
    Kudlacek, O.
    Labit, B.
    Lazzaro, E.
    Le, H. B.
    Lipschultz, B.
    Llobet, X.
    Lomanowski, B.
    Loschiavo, V. P.
    Lunt, T.
    Maget, P.
    Maljaars, E.
    Malygin, A.
    Maraschek, M.
    Marini, C.
    Martin, P.
    Martin, Y.
    Mastrostefano, S.
    Maurizio, R.
    Mavridis, M.
    Mazon, D.
    McAdams, R.
    McDermott, R.
    Merle, A.
    Meyer, H.
    Militello, F.
    Miron, I. G.
    Molina Cabrera, P. A.
    Moret, J. -M
    Moro, A.
    Moulton, D.
    Naulin, V.
    Nespoli, F.
    Nielsen, A. H.
    Nocente, M.
    Nouailletas, R.
    Nowak, S.
    Odstrčil, T.
    Papp, G.
    Papřok, R.
    Pau, A.
    Pautasso, G.
    Pericoli Ridolfini, V.
    Piovesan, P.
    Piron, C.
    Pisokas, T.
    Porte, L.
    Preynas, M.
    Ramogida, G.
    Rapson, C.
    Juul Rasmussen, J.
    Reich, M.
    Reimerdes, H.
    Reux, C.
    Ricci, P.
    Rittich, D.
    Riva, F.
    Robinson, T.
    Saarelma, S.
    Saint-Laurent, F.
    Sauter, O.
    Scannell, R.
    Schlatter, C.
    Schneider, B.
    Schneider, P.
    Schrittwieser, R.
    Sciortino, F.
    Sertoli, M.
    Sheikh, U.
    Sieglin, B.
    Silva, M.
    Sinha, J.
    Sozzi, C.
    Spolaore, M.
    Stange, T.
    Stoltzfus-Dueck, T.
    Tamain, P.
    Teplukhina, A.
    Testa, D.
    Theiler, C.
    Thornton, A.
    Tophøj, L.
    Tran, M. Q.
    Tsironis, C.
    Tsui, C.
    Uccello, A.
    Vartanian, S.
    Verdoolaege, G.
    Verhaegh, K.
    Vermare, L.
    Vianello, N.
    Vijvers, W. A. J.
    Vlahos, L.
    Vu, N. M. T.
    Walkden, N.
    Wauters, T.
    Weisen, H.
    Wischmeier, M.
    Zestanakis, P.
    Zuin, M.
    Overview of the TCV tokamak program: Scientific progress and facility upgrades2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102011Article in journal (Refereed)
    Abstract [en]

    The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.

  • 30.
    Coda, S.
    et al.
    Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland..
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Zuin, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    et al.,
    Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 11, article id 112023Article in journal (Refereed)
    Abstract [en]

    The research program of the TCV tokamak ranges from conventional to advanced-tokamak scenarios and alternative divertor configurations, to exploratory plasmas driven by theoretical insight, exploiting the device's unique shaping capabilities. Disruption avoidance by real-time locked mode prevention or unlocking with electron-cyclotron resonance heating (ECRH) was thoroughly documented, using magnetic and radiation triggers. Runaway generation with high-Z noble-gas injection and runaway dissipation by subsequent Ne or Ar injection were studied for model validation. The new 1 MW neutral beam injector has expanded the parameter range, now encompassing ELMy H-modes in an ITER-like shape and nearly noninductive II-mode discharges sustained by electron cyclotron and neutral beam current drive. In the H-mode, the pedestal pressure increases modestly with nitrogen seeding while fueling moves the density pedestal outwards, but the plasma stored energy is largely uncorrelated to either seeding or fueling. High fueling at high triangularity is key to accessing the attractive small edge-localized mode (type-II) regime. Turbulence is reduced in the core at negative triangularity, consistent with increased confinement and in accord with global gyrokinetic simulations. The geodesic acoustic mode, possibly coupled with avalanche events, has been linked with particle flow to the wall in diverted plasmas. Detachment, scrape-off layer transport, and turbulence were studied in L- and H-modes in both standard and alternative configurations (snowflake, super-X, and beyond). The detachment process is caused by power `starvation' reducing the ionization source, with volume recombination playing only a minor role. Partial detachment in the H-mode is obtained with impurity seeding and has shown little dependence on flux expansion in standard single-null geometry. In the attached 1,-mode phase, increasing the outer connection length reduces the in-out heat-flow asymmetry. A doublet plasma, featuring an internal X-point, was achieved successfully, and a transport barrier was observed in the mantle just outside the internal separatrix. In the near future variableconfiguration baffles and possibly divertor ptunping will be introduced to investigate the effect of divertor closure on exhaust and performance, and 3.5 MW ECR and 1 MW neutral beam injection heating will be added.

  • 31. Coenen, J. W.
    et al.
    Arnoux, G.
    Bazylev, B.
    Matthews, G. F.
    Autricque, A.
    Balboa, I.
    Clever, M.
    Dejarnac, R.
    Coffey, I.
    Corre, Y.
    Devaux, S.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Gauthier, E.
    Horacek, J.
    Jachmich, S.
    Komm, M.
    Knaup, M.
    Krieger, K.
    Marsen, S.
    Meigs, A.
    Mertens, Ph.
    Pitts, R. A.
    Puetterich, T.
    Rack, M.
    Stamp, M.
    Sergienko, G.
    Tamain, P.
    Thompson, V.
    ELM-induced transient tungsten melting in the JET divertor2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 2, article id 023010Article in journal (Refereed)
    Abstract [en]

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I-P = 3.0 MA/B-T = 2.9 T H-mode pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within similar to 1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (delta W similar to 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (similar to 80 mu m) were released. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j x B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed. These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.

  • 32. Coenen, J. W.
    et al.
    Sertoli, M.
    Brezinsek, S.
    Coffey, I.
    Dux, R.
    Giroud, C.
    Groth, M.
    Huber, A.
    Ivanova, Darya
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Krieger, K.
    Lawson, K.
    Marsen, S.
    Meigs, A.
    Neu, R.
    Puetterich, T.
    van Rooij, G. J.
    Stamp, M. F.
    Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET2013In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 53, no 7, p. 073043-Article in journal (Refereed)
    Abstract [en]

    This paper covers aspects of long-term evolution of intrinsic impurities in the JET tokamak with respect to the newly installed ITER-like wall (ILW). At first the changes related to the change over from the JET-C to the JET-ILW with beryllium (Be) as the main wall material and tungsten (W) in the divertor are discussed. The evolution of impurity fluxes in the newly installed W divertor with respect to studying material migration is described. In addition, a statistical analysis of transient impurity events causing significant plasma contamination and radiation losses is shown. The main findings comprise a drop in carbon content (x20) (see also Brezinsek et al (2013 J. Nucl. Mater. 438 S303)), low oxygen content (x10) due to the Be first wall (Douai et al 2013 J. Nucl. Mater. 438 S1172-6) as well as the evolution of the material mix in the divertor. Initially, a short period of repetitive ohmic plasmas was carried out to study material migration (Krieger et al 2013 J. Nucl. Mater. 438 S262). After the initial 1600 plasma seconds the material surface composition is, however, still evolving. With operational time, the levels of recycled C are increasing slightly by 20% while the Be levels in the deposition-dominated inner divertor are dropping, hinting at changes in the surface layer material mix made of Be, C and W. A steady number of transient impurity events, consisting of W and constituents of inconel, is observed despite the increase in variation in machine operation and changes in magnetic configuration as well as the auxiliary power increase.

  • 33. Corre, Y.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Thermal analysis of protruding surfaces in the JET divertor2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 6, article id 066009Article in journal (Refereed)
    Abstract [en]

    Tungsten (W) melting is a major concern for next step fusion devices. Two ELM induced tungsten melting experiments have been performed in JET by introducing two special target plate lamellae designed to receive excessively high ELM transient power loads. The first experiment was performed in JET in 2013 using a special lamella with a sharp leading edge gradually varying from h = 0.25 mm to 2.5 mm in order to maximise the temperature rise by exposure to the full parallel heat flux. ELM-induced transient melting has been successively achieved allowing investigation of the melt motion. However, using the available IR viewing geometry from the top, it was not possible to directly discriminate between the top and leading edge power loads. To improve the experimental validation of heat load and melt motion modelling codes, a new protruding W lamella with a 15 degrees slope facing the toroidal direction has been installed for the 2015-16 campaigns, allowing direct, spatially resolved observation of the top surface and reduced sensitivity of the analysis to the surface incidence angle of the magnetic field. This paper reports on the results of these more recent experiments, with specific focus on IR data analysis and heat flux calculations during L-mode discharges in order to investigate the behaviour of the W lamella with steady state heat load, which is a prerequisite for the more complex ELMing H-mode discharges (including both, steady and transient heat loads). It shows that, at least in L-mode, the assumption of optical heat flux projection is justified.

  • 34.
    Dahlin, Jon-Erik
    et al.
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Scheffel, Jan
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Numerical studies of confinement scalings for the dynamo-free reversed-field pinch2007In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, no 1, p. 9-16Article in journal (Refereed)
    Abstract [en]

    In the reversed-field pinch (RFP), tearing modes associated with the dynamo are responsible for reduced energy- and particle confinement. In this study, it is observed that by implementing current profile control (CPC) in the RFP, a dynamo-free state can be achieved. The effect of CPC in the RFP is examined by the use of numerical simulations, and scaling laws are presented for confinement parameters. The model is nonlinear MHD in 3D including finite resistivity and pressure. A linear regression analysis is performed on simulation data from a series of computer runs for a set of initial parameter values. Scaling laws are determined for radial magnetic field, energy confinement time, poloidal beta and temperature. Confinement is improved substantially as compared with the conventional RFP - the temperature reaches reactor relevant levels by ohmic heating alone. It is observed that the configuration spontaneously develops into a quasi single helicity state. The CPC scheme is designed to eliminate the fluctuating electric dynamo field Ef ≤ -〈v × B〉, using feedback of an externally imposed electric field. The focus of this study is on obtaining principal theoretical optimization of confinement in the RFP by implementing CPC and to formulate scaling laws for confinement parameters, thus investigating the reactor viability of the concept.

  • 35.
    Dahlin, Jon-Erik
    et al.
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Scheffel, Jan
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Ultra-high beta in numerical simulations of a tearing-mode reduced reversed-field pinch2007In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, no 9, p. 1184-1188Article in journal (Refereed)
    Abstract [en]

    In the advanced reversed-field pinch (RFP), current profile control (CPC) enables energy confinement time and poloidal beta to increase substantially as compared with the conventional RFP due to reduced magnetic field stochasticity. Numerical simulations using the three-dimensional non-linear resistive MHD-code DEBSP are performed showing that the poloidal beta is not limited to the m ≤ 0 stability criterion βθ < 1/2. Instead, as tearing modes are diminished, it may approach unity. The beta criterion is theoretically analysed and a new, more general, criterion is derived. Analytic estimates of the resistive tearing and g-mode growth rates are derived for m ≤ 0, and it is shown that both tearing and g-mode growth rates decrease significantly as CPC is employed. Furthermore, quasi-steady state operation with increased confinement due to active control of the current profile is numerically demonstrated for the advanced RFP for a scenario with βθ < 1/2.

  • 36.
    De Angeli, M.
    et al.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Lazzaro, E.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Ratynskaia, Svetlana V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Vignitchouk, Ladislas
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Castaldo, C.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Apicella, M. L.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Gervasini, G.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Giacomi, G.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Giovannozzi, E.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Granucci, G.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Iafrati, M.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Iraji, D.
    Amirkabir Univ Technol, Energy Engn & Phys Dept, Tehran, Iran..
    Maddaluno, G.
    ENEA, CR Frascati, I-00044 Rome, Italy..
    Riva, G.
    CNR, Ist Chim Mat Condensata & Tecnol Energia, Via R Cozzi 53, I-20125 Milan, Italy..
    Uccello, A.
    CNR, Ist Sci & Tecnol Plasmi, Milan, Italy..
    Pre-plasma remobilization of ferromagnetic dust in FTU and possible interference with tokamak operations2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 10, article id 106033Article in journal (Refereed)
    Abstract [en]

    Experimental evidence of the pre-plasma remobilization of ferromagnetic dust in FTU is presented. Thomson scattering data and IR camera observations document the occurrence of intrinsic dust remobilization prior to discharge start-up and allow for a rough calculation of the average mobilized dust density. Exposures of calibrated extrinsic non-magnetic and ferromagnetic dust to sole magnetic field discharges reveal that the magnetic moment force is the main mobilizing force, as confirmed by theoretical estimates. Pre-plasma remobilization probabilities are computed for varying dust sizes. The impact of prematurely remobilized dust on the breakdown and burn-through start-up phases is investigated together with the discharge termination induced once the plasma plateau is established.

  • 37. de Vries, P. C.
    et al.
    Salmi, A.
    Parail, V.
    Giroud, C.
    Andrew, Y.
    Biewer, T. M.
    Crombe, K.
    Jenkins, I.
    Johnson, Thomas J.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Kiptily, V.
    Loarte, A.
    Lonnroth, J.
    Meigs, A.
    Oyama, N.
    Sartori, R.
    Saibene, G.
    Urano, H.
    Zastrow, K. D.
    Effect of toroidal field ripple on plasma rotation in JET2008In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 48, no 3Article in journal (Refereed)
    Abstract [en]

    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.

  • 38. Dejarnac, R.
    et al.
    Podolnik, A.
    Komm, M.
    Arnoux, G.
    Coenen, J. W.
    Devaux, S.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Gunn, J. P.
    Matthews, G. F.
    Pitts, R. A.
    Numerical evaluation of heat flux and surface temperature on a misaligned JET divertor W lamella during ELMs2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 12, p. 123011-Article in journal (Refereed)
    Abstract [en]

    A series of experiments has been performed on JET to investigate the dynamics of transient melting due to edge localized modes (ELMs). The experiment employs a deliberately misaligned lamella in one module of the JET bulk tungsten outer divertor, allowing the combination of stationary power flux and ELMs to transiently melt the misaligned edge. During the design of the experiment a number of calculations were performed using 2D particle-in-cell simulations and a heat transfer code to investigate the influence on the deposited power flux of finite Larmor radius effects associated with the energetic ELM ions. This has been performed using parameter scans inside a range of pedestal temperatures and densities to scope different experimentally expected ELM energies. On the one hand, we observe optimistic results, with smoothing of the heat flux due to the Larmor gyration on the protruding side of the lamella which sees the direct parallel flux-the deposited power tends to be lower than the nominal value expected from geometric magnetic field line impact over a distance smaller than 2 Larmor radii, a finding which is always valid during ELMs for such a geometry. On the other hand, the fraction of the flux not reaching the directly wetted side is transferred and spread to the top surface of the lamella. The hottest point of the lamella (corner side/top) does not always benefit from the gain from the Larmor smoothing effect because of an enhanced power deposition from the second contribution.

  • 39.
    Ding, B. J.
    et al.
    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Ratynskaia, Svetlana V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Vallejos Olivares, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 9, article id 095003Article, review/survey (Refereed)
    Abstract [en]

    Progress in understanding lower hybrid current drive (LHCD) at high density has been made through experiments and modeling, which is encouraging given the need for an efficient off-axis current profile control technique in burning plasma. By reducing the wall recycling of neutrals, the edge temperature is increased and the effect of parametric instability (PI) and collisional absorption (CA) is reduced, which is beneficial for increasing the current drive efficiency. Strong single pass absorption is preferred to prevent CA and high LH operating frequency is essential for wave propagation to the core region at high density, presumably to mitigate the effect of PI. The dimensionless parameter that characterizes LH wave accessibility and wave refraction for the experiments in this joint study is shown to bracket the region in parameter space where ITER LHCD experiments will operate in the steady state scenario phase. Further joint experiments and cross modeling are necessary to understand the LHCD physics in weak damping regimes which would increase confidence in predictions for ITER where the absorption is expected to be strong.

  • 40.
    Drake, James Robert
    et al.
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Brunsell, Per
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Yadikin, Dimitry
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Cecconello, Marco
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Malmberg, Jenny
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Liu, Y.
    Experimental and theoretical studies of active control of resistive wall mode growth in the EXTRAP T2R reversed-field pinch2005In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 45, no 7, p. 557-564Article in journal (Refereed)
    Abstract [en]

    Active feedback control of resistive wall modes (RWMs) has been demonstrated in the EXTRAP T2R reversed-field pinch experiment. The control system includes a sensor consisting of an array of magnetic coils (measuring mode harmonics) and an actuator consisting of a saddle coil array (producing control harmonics). Closed-loop (feedback) experiments using a digital controller based on a real time Fourier transform of sensor data have been studied for cases where the feedback gain was constant and real for all harmonics (corresponding to an intelligent-shell) and cases where the feedback gain could be set for selected harmonics, with both real and complex values (targeted harmonics). The growth of the dominant RWMs can be reduced by feedback for both the intelligent-shell and targeted-harmonic control systems. Because the number of toroidal positions of the saddle coils in the array is half the number of the sensors, it is predicted and observed experimentally that the control harmonic spectrum has sidebands. Individual unstable harmonics can be controlled with real gains. However if there are two unstable mode harmonics coupled by the sideband effect, control is much less effective with real gains. According to the theory, complex gains give better results for (slowly) rotating RWMs, and experiments support this prediction. In addition, open loop experiments have been used to observe the effects of resonant field errors applied to unstable, marginally stable and robustly stable modes. The observed effects of field errors are consistent with the thin-wall model, where mode growth is proportional to the resonant field error amplitude and the wall penetration time for that mode harmonic.

  • 41.
    Dumont, R. J.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Mailloux, J.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Aslanyan, V
    MIT, PSFC, 175 Albany St, Cambridge, MA 02039 USA..
    Baruzzo, M.
    Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Challis, C. D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Coffey, I
    Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland..
    Czarnecka, A.
    Inst Plasma Phys & Laser Microfus, Hery St 23, PL-00908 Warsaw, Poland..
    Delabie, E.
    Oak Ridge Natl Lab, Oak Ridge, TN USA..
    Eriksson, J.
    Uppsala Univ, Dept Phys & Astron, SE-75119 Uppsala, Sweden..
    Faustin, J.
    Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Ferreira, J.
    Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Fitzgerald, M.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Garcia, J.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Giacomelli, L.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Giroud, C.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Hawkes, N.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Jacquet, Ph
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Joffrin, E.
    CEA, IRFM, F-13108 St Paul Les Durance, France..
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Keeling, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    King, D.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Kiptily, V
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Lomanowski, B.
    Aalto Univ, POB 14100, FIN-00076 Aalto, Finland..
    Lerche, E.
    Ass EUROFUS Belgian State, LPP ERM KMS, TEC Partner, Brussels, Belgium..
    Mantsinen, M.
    Barcelona Supercomp Ctr, Barcelona, Spain.;ICREA, Barcelona, Spain..
    Meneses, L.
    Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Menmuir, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    McClements, K.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Moradi, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Nabais, F.
    Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Nocente, M.
    Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy..
    Patel, A.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Patten, H.
    Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Puglia, P.
    Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Scannell, R.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Sharapov, S.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Solano, E. R.
    CIEMAT, Lab Nacl Fus, Madrid, Spain..
    Tsalas, M.
    FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands.;ITER Org, Route Vinon Sur Verdon, F-13067 St Paul Les Durance, France..
    Vallejos, Pablo
    KTH, School of Electrical Engineering and Computer Science (EECS), Fusion Plasma Physics.
    Weisen, H.
    Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Scenario development for the observation of alpha-driven instabilities in JET DT plasmas2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 8, article id 082005Article in journal (Refereed)
    Abstract [en]

    In DT plasmas, toroidal Alfven eigenmodes (TAEs) can be made unstable by the alpha particles resulting from fusion reactions, and may induce a significant redistribution of fast ions. Recent experiments have been conducted in JET deuterium plasmas in order to prepare scenarios aimed at observing alpha-driven TAEs in a future JET DT campaign. Discharges at low density, large core temperatures associated with the presence of internal transport barriers and characterised by good energetic ion confinement have been performed. ICRH has been used in the hydrogen minority heating regime to probe the TAE stability. The consequent presence of MeV ions has resulted in the observation of TAEs in many instances. The impact of several key parameters on TAE stability could therefore be studied experimentally. Modeling taking into account NBI and ICRH fast ions shows good agreement with the measured neutron rates, and has allowed predictions for DT plasmas to be performed.

  • 42. Eriksson, J.
    et al.
    Nocente, M.
    Binda, F.
    Cazzaniga, C.
    Conroy, S.
    Ericsson, G.
    Giacomelli, L.
    Gorini, G.
    Hellesen, C.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hjalmarsson, A.
    Jacobsen, A. S.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Kiptily, V.
    Koskela, T.
    Mantsinen, M.
    Salewski, M.
    Schneider, M.
    Sharapov, S.
    Skiba, M.
    Tardocchi, M.
    Weiszflog, M.
    Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 12, article id 123026Article in journal (Refereed)
    Abstract [en]

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe the plasma simultaneously along vertical and oblique lines of sight. Parameters of the fast ion energy distribution, such as the high energy cut-off of the deuteron distribution function and the RF coupling constant, are determined from data within a uniform analysis framework for neutron and gamma-ray spectroscopy based on a one-dimensional model and by a consistency check among the individual measurement techniques. A systematic difference is seen between the two lines of sight and is interpreted to originate from the sensitivity of the oblique detectors to the pitch-angle structure of the distribution around the resonance, which is not correctly portrayed within the adopted one dimensional model. A framework to calculate neutron and gamma-ray emission from a spatially resolved, two-dimensional deuteron distribution specified by energy/pitch is thus developed and used for a first comparison with predictions from ab initio models of RF heating at multiple harmonics. The results presented in this paper are of relevance for the development of advanced diagnostic techniques for MeV range ions in high performance fusion plasmas, with applications to the experimental validation of RF heating codes and, more generally, to studies of the energy distribution of ions in the MeV range in high performance deuterium and deuterium-tritium plasmas.

  • 43. Eriksson, L. G.
    et al.
    Johnson, Thomas J.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Mayoral, M. L.
    Coda, S.
    Sauter, O.
    Buttery, R. J.
    McDonald, D.
    Hellsten, Torbjörn A. K.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Mantsinen, M. J.
    Mueck, A.
    Noterdaeme, J. M.
    Santala, M.
    Westerhor, E.
    de Vries, P.
    On ion cyclotron current drive for sawtooth control2006In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 46, no 10, p. S951-S964Article in journal (Refereed)
    Abstract [en]

    Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.

  • 44. Falchetto, G. L.
    et al.
    Coster, D.
    Coelho, R.
    Scott, B. D.
    Figini, L.
    Kalupin, D.
    Nardon, E.
    Nowak, S.
    Alves, L. L.
    Artaud, J. F.
    Basiuk, V.
    Bizarro, Jao P. S.
    Boulbe, C.
    Dinklage, A.
    Farina, D.
    Faugeras, B.
    Ferreira, J.
    Figueiredo, A.
    Huynh, Ph
    Imbeaux, F.
    Ivanova-Stanik, I.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Klingshirn, H-J
    Konz, C.
    Kus, A.
    Marushchenko, N. B.
    Pereverzev, G.
    Owsiak, M.
    Poli, E.
    Peysson, Y.
    Reimer, R.
    Signoret, J.
    Sauter, O.
    Stankiewicz, R.
    Strand, P.
    Voitsekhovitch, I.
    Westerhof, E.
    Zok, T.
    Zwingmann, W.
    The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results2014In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 54, no 4, p. 043018-Article in journal (Refereed)
    Abstract [en]

    A selection of achievements and first physics results are presented of the European Integrated Tokamak Modelling Task Force (EFDA ITM-TF) simulation framework, which aims to provide a standardized platform and an integrated modelling suite of validated numerical codes for the simulation and prediction of a complete plasma discharge of an arbitrary tokamak. The framework developed by the ITM-TF, based on a generic data structure including both simulated and experimental data, allows for the development of sophisticated integrated simulations (workflows) for physics application.The equilibrium reconstruction and linear magnetohydrodynamic (MHD) stability simulation chain was applied, in particular, to the analysis of the edgeMHDstability of ASDEX Upgrade type-I ELMy H-mode discharges and ITER hybrid scenario, demonstrating the stabilizing effect of an increased Shafranov shift on edge modes. Interpretive simulations of a JET hybrid discharge were performed with two electromagnetic turbulence codes within ITM infrastructure showing the signature of trapped-electron assisted ITG turbulence. A successful benchmark among five EC beam/ray-tracing codes was performed in the ITM framework for an ITER inductive scenario for different launching conditions from the equatorial and upper launcher, showing good agreement of the computed absorbed power and driven current. Selected achievements and scientific workflow applications targeting key modelling topics and physics problems are also presented, showing the current status of the ITM-TF modelling suite.

  • 45. Fasoli, A.
    et al.
    Gormenzano, C.
    Berk, H. L.
    Breizman, B.
    Briguglio, S.
    Darrow, D. S.
    Gorelenkov, N.
    Heidbrink, W. W.
    Jaun, Andre
    KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Konovalov, S. V.
    Nazikian, R.
    Noterdaeme, J. M.
    Sharapov, S.
    Shinohara, K.
    Testa, D.
    Tobita, K.
    Todo, Y.
    Vlad, G.
    Zonca, F.
    Chapter 5: Physics of energetic ions2007In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 47, no 6, p. S264-S284Article, review/survey (Refereed)
    Abstract [en]

    This chapter reviews the progress accomplished since the redaction of the first ITER Physics Basis (1999 Nucl. Fusion 39 2137-664) in the field of energetic ion physics and its possible impact on burning plasma regimes. New schemes to create energetic ions simulating the fusion-produced alphas are introduced, accessing experimental conditions of direct relevance for burning plasmas, in terms of the Alfvenic Mach number and of the normalised pressure gradient of the energetic ions, though orbit characteristics and size cannot always match those of ITER. Based on the experimental and theoretical knowledge of the effects of the toroidal magnetic field ripple on direct fast ion losses, ferritic inserts in ITER are expected to provide a significant reduction of ripple alpha losses in reversed shear configurations. The nonlinear fast ion interaction with kink and tearing modes is qualitatively understood, but quantitative predictions are missing, particularly for the stabilisation of sawteeth by fast particles that can trigger neoclassical tearing modes. A large database on the linear stability properties of the modes interacting with energetic ions, such as the Alfven eigenmode has been constructed. Comparisons between theoretical predictions and experimental measurements of mode structures and drive/damping rates approach a satisfactory degree of consistency, though systematic measurements and theory comparisons of damping and drive of intermediate and high mode numbers, the most relevant for ITER, still need to be performed. The nonlinear behaviour of Alfven eigenmodes close to marginal stability is well characterized theoretically and experimentally, which gives the opportunity to extract some information on the particle phase space distribution from the measured instability spectral features. Much less data exists for strongly unstable scenarios, characterised by nonlinear dynamical processes leading to energetic ion redistribution and losses, and identified in nonlinear numerical simulations of Alfven eigenmodes and energetic particle modes. Comparisons with theoretical and numerical analyses are needed to assess the potential implications of these regimes on burning plasma scenarios, including in the presence of a large number of modes simultaneously driven unstable by the fast ions.

  • 46.
    Faugeras, Blaise
    et al.
    Univ Cote dAzur, CNRS, INRIA, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Equilibrium reconstruction at JET using Stokes model for polarimetry2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 10, article id 106032Article in journal (Refereed)
    Abstract [en]

    This paper presents the first application to real JET data of the new equilibrium code NICE which enables the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry. The conducted numerical experiments enable first of all to validate NICE by comparing it to the well-established EFIT code on 4 selected high performance shots. Secondly the results indicate that the fit to polarimetry measurements clearly benefits from the use of Stokes vector measurements compared to the classical case of Faraday measurements, and that the reconstructed p' and ff' profiles are better constrained with smaller error bars and are closer to the profiles reconstructed by EFTM, the EFIT JET code using internal MSE constraints.

  • 47.
    Felici, F.
    et al.
    Eindhoven Univ Technol, Dept Mech Engn, Control Syst Technol Grp, POB 513, NL-5600 MB Eindhoven, Netherlands.;Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 9, article id 096006Article in journal (Refereed)
  • 48.
    Frassinetti, Lorenzo
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Alfier, A.
    Pasqualotto, R.
    Bonomo, F.
    Innocente, P.
    Heat diffusivity model and temperature simulations in RFX-mod2008In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 48, no 4, p. 045007-Article in journal (Refereed)
    Abstract [en]

    The core transport properties of reversed field pinch (RFP) plasmas in the standard regime are generally associated with a high level of magnetic chaos. Indeed, in the RFX-mod RFP device, the core temperature profile is often very flat, indicating that the heat diffusivity is very high. In contrast, the temperature edge profile has a steep gradient, indicating that the edge is characterized by low heat transport. These simple experimental evidences are the basis of a heat diffusivity model that is used as an input to a numerical code for plasma temperature simulation. The simulated temperature reproduces with good accuracy both the experimental T, time evolution and its radial profiles in different plasma scenarios, showing that the model is useful for estimating the plasma heat diffusivity. This work suggests that the heat transport properties in the RFP plasma core are dominated by magnetic chaos in standard discharges and suggests a simple way to estimate electron heat diffusivity from density, input power and magnetic fluctuation measurements.

  • 49.
    Frassinetti, Lorenzo
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Beurskens, M. N. A.
    Saarelma, S.
    Boom, J. E.
    Delabie, E.
    Flanagan, J.
    Kempenaars, M.
    Giroud, C.
    Lomas, P.
    Meneses, L.
    Maggi, C. S.
    Menmuir, S.
    Nunes, I.
    Rimini, F.
    Stefániková, Estera
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Urano, H.
    Verdoolaege, G.
    Global and pedestal confinement and pedestal structure in dimensionless collisionality scans of low-triangularity H-mode plasmas in JET-ILW2017In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 1, article id 061012Article in journal (Refereed)
    Abstract [en]

    A dimensionless collisionality scan in low-triangularity plasmas in the Joint European Torus with the ITER-like wall (JET-ILW) has been performed. The increase of the normalized energy confinement (defined as the ratio between thermal energy confinement and Bohm confinement time) with decreasing collisionality is observed. Moreover, at low collisionality, a confinement factor H-98, comparable to JET-C, is achieved. At high collisionality, the low normalized confinement is related to a degraded pedestal stability and a reduction in the density-profile peaking. The increase of normalized energy confinement is due to both an increase in the pedestal and in the core regions. The improvement in the pedestal is related to the increase of the stability. The improvement in the core is driven by (i) the core temperature increase via the temperature-profile stiffness and by (ii) the density-peaking increase driven by the low collisionality. Pedestal stability analysis performed with the ELITE (edge-localized instabilities in tokamak equilibria) code has a reasonable qualitative agreement with the experimental results. An improvement of the pedestal stability with decreasing collisionality is observed. The improvement is ascribed to the reduction of the pedestal width, the increase of the bootstrap current and the reduction of the relative shift between the positions of the pedestal density and pedestal temperature. The EPED1 model predictions for the pedestal pressure height are qualitatively well correlated with the experimental results. Quantitatively, EPED1 overestimates the experimental pressure by 15-35%. In terms of the pedestal width, a correct agreement (within 10-15%) between the EPED1 and the experimental width is found at low collisionality. The experimental pedestal width increases with collisionality. Nonetheless, an extrapolation to low-collisionality values suggests that the width predictions from the KBM constraint are reasonable for ITER.

  • 50.
    Frassinetti, Lorenzo
    et al.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Brunsell, Per R.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Cecconello, Marco
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Drake, James R.
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics. KTH, School of Electrical Engineering (EES), Centres, Alfvén Laboratory Centre for Space and Fusion Plasma Physics.
    Heat transport modelling in EXTRAP T2R2009In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 49, no 2Article in journal (Refereed)
    Abstract [en]

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity chi(e) into three regions, one in the plasma core, where chi(e) is assumed to be determined by the tearing modes, one located around the reversal radius, where chi(e) is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high chi(e) is assumed. The absolute values of the core and of the reversal chi(e) are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

12345 1 - 50 of 227
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf